sgugit-model / README.md
system's picture
system HF staff
Commit From AutoTrain
f9911e9
---
tags:
- autotrain
- text-classification
language:
- unk
widget:
- text: "I love AutoTrain"
datasets:
- GRPUI/autotrain-data-sgugit-model-v4
co2_eq_emissions:
emissions: 1.0134962279728574
---
# Model Trained Using AutoTrain
- Problem type: Multi-class Classification
- Model ID: 92034144745
- CO2 Emissions (in grams): 1.0135
## Validation Metrics
- Loss: 0.027
- Accuracy: 0.997
- Macro F1: 0.989
- Micro F1: 0.997
- Weighted F1: 0.997
- Macro Precision: 0.991
- Micro Precision: 0.997
- Weighted Precision: 0.997
- Macro Recall: 0.989
- Micro Recall: 0.997
- Weighted Recall: 0.997
## Usage
You can use cURL to access this model:
```
$ curl -X POST -H "Authorization: Bearer YOUR_API_KEY" -H "Content-Type: application/json" -d '{"inputs": "I love AutoTrain"}' https://api-inference.huggingface.co/models/GRPUI/autotrain-sgugit-model-v4-92034144745
```
Or Python API:
```
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model = AutoModelForSequenceClassification.from_pretrained("GRPUI/autotrain-sgugit-model-v4-92034144745", use_auth_token=True)
tokenizer = AutoTokenizer.from_pretrained("GRPUI/autotrain-sgugit-model-v4-92034144745", use_auth_token=True)
inputs = tokenizer("I love AutoTrain", return_tensors="pt")
outputs = model(**inputs)
```