|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: bart-base-cnn-xsum-swe |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-cnn-xsum-swe |
|
|
|
This model is a fine-tuned version of [Gabriel/bart-base-cnn-swe](https://huggingface.co/Gabriel/bart-base-cnn-swe) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1027 |
|
- Rouge1: 30.9467 |
|
- Rouge2: 12.2589 |
|
- Rougel: 25.4487 |
|
- Rougelsum: 25.4792 |
|
- Gen Len: 19.7379 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 4e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 32 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_steps: 500 |
|
- num_epochs: 4 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 2.3076 | 1.0 | 6375 | 2.1986 | 29.7041 | 10.9883 | 24.2149 | 24.2406 | 19.7193 | |
|
| 2.0733 | 2.0 | 12750 | 2.1246 | 30.4521 | 11.8107 | 24.9519 | 24.9745 | 19.6592 | |
|
| 1.8933 | 3.0 | 19125 | 2.0989 | 30.9407 | 12.2682 | 25.4135 | 25.4378 | 19.7195 | |
|
| 1.777 | 4.0 | 25500 | 2.1027 | 30.9467 | 12.2589 | 25.4487 | 25.4792 | 19.7379 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.22.2 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.5.1 |
|
- Tokenizers 0.12.1 |
|
|