Llama-31-8B_task-1_60-samples_config-2_full_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-1_auto dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8270

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.2096 0.6957 2 2.1129
2.167 1.7391 5 1.9558
1.8726 2.7826 8 1.7428
1.7678 3.8261 11 1.5017
1.3895 4.8696 14 1.2525
1.234 5.9130 17 1.0325
0.9378 6.9565 20 0.9271
0.8782 8.0 23 0.8920
0.8394 8.6957 25 0.8784
0.7845 9.7391 28 0.8647
0.7863 10.7826 31 0.8503
0.7261 11.8261 34 0.8417
0.7333 12.8696 37 0.8337
0.6709 13.9130 40 0.8289
0.6612 14.9565 43 0.8270
0.6253 16.0 46 0.8289
0.6012 16.6957 48 0.8323
0.5792 17.7391 51 0.8385
0.5162 18.7826 54 0.8561
0.5219 19.8261 57 0.8603
0.445 20.8696 60 0.8802
0.4396 21.9130 63 0.9046

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
2
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-1_60-samples_config-2_full_auto

Adapter
(499)
this model

Collection including GaetanMichelet/Llama-31-8B_task-1_60-samples_config-2_full_auto