Llama-31-8B_task-2_60-samples_config-1_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-2_auto dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5999

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
0.8547 0.8696 5 0.8787
0.8316 1.9130 11 0.7978
0.7352 2.9565 17 0.7125
0.6096 4.0 23 0.6426
0.5369 4.8696 28 0.6110
0.4624 5.9130 34 0.5999
0.3577 6.9565 40 0.6314
0.3027 8.0 46 0.6916
0.2146 8.8696 51 0.7509
0.1132 9.9130 57 0.9555
0.0626 10.9565 63 1.0440
0.0376 12.0 69 1.1408
0.0262 12.8696 74 1.1577

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-2_60-samples_config-1_auto

Adapter
(563)
this model

Collection including GaetanMichelet/Llama-31-8B_task-2_60-samples_config-1_auto