Llama-31-8B_task-3_120-samples_config-2_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-3_auto and the GaetanMichelet/chat-120_ft_task-3_auto datasets. It achieves the following results on the evaluation set:

  • Loss: 0.3272

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.2357 0.9091 5 2.1322
1.6899 2.0 11 1.3005
0.6881 2.9091 16 0.6189
0.5601 4.0 22 0.4413
0.3305 4.9091 27 0.3900
0.3093 6.0 33 0.3525
0.2941 6.9091 38 0.3440
0.2705 8.0 44 0.3357
0.255 8.9091 49 0.3278
0.1954 10.0 55 0.3272
0.1796 10.9091 60 0.3391
0.1892 12.0 66 0.3651
0.1795 12.9091 71 0.3963
0.0982 14.0 77 0.4424
0.0568 14.9091 82 0.5230
0.046 16.0 88 0.6079
0.0156 16.9091 93 0.6626

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-3_120-samples_config-2_auto

Adapter
(563)
this model

Collection including GaetanMichelet/Llama-31-8B_task-3_120-samples_config-2_auto