Llama-31-8B_task-3_60-samples_config-2_auto

This model is a fine-tuned version of meta-llama/Meta-Llama-3.1-8B-Instruct on the GaetanMichelet/chat-60_ft_task-3_auto dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3568

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss
2.2034 0.6957 2 2.2399
2.1509 1.7391 5 1.8617
1.5862 2.7826 8 1.1118
0.9806 3.8261 11 0.5886
0.4601 4.8696 14 0.4766
0.4788 5.9130 17 0.4128
0.3828 6.9565 20 0.3872
0.2646 8.0 23 0.3888
0.349 8.6957 25 0.3620
0.299 9.7391 28 0.3568
0.2883 10.7826 31 0.3583
0.2187 11.8261 34 0.3658
0.2439 12.8696 37 0.3657
0.1651 13.9130 40 0.3713
0.2365 14.9565 43 0.3811
0.1654 16.0 46 0.3851
0.161 16.6957 48 0.4000

Framework versions

  • PEFT 0.12.0
  • Transformers 4.44.0
  • Pytorch 2.1.2+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1
Downloads last month
11
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for GaetanMichelet/Llama-31-8B_task-3_60-samples_config-2_auto

Adapter
(499)
this model

Collection including GaetanMichelet/Llama-31-8B_task-3_60-samples_config-2_auto