George-Ogden's picture
Create README.md
1f99ce2
|
raw
history blame
1.33 kB
metadata
license: apache-2.0
datasets:
  - bookcorpus
  - wikipedia
language:
  - en
metrics:
  - glue
pipeline_tag: text-classification

from transformers import ( default_data_collator, AutoTokenizer, AutoModelForSequenceClassification, Trainer, ) from datasets import load_dataset

import functools

from utils import compute_metrics, preprocess_function

model_name = "George-Ogden/bert-large-cased-finetuned-mnli" model = AutoModelForSequenceClassification.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) trainer = Trainer( model=model, eval_dataset="mnli", tokenizer=tokenizer, compute_metrics=compute_metrics, data_collator=default_data_collator, )

raw_datasets = load_dataset( "glue", "mnli", ).map(functools.partial(preprocess_function, tokenizer), batched=True)

tasks = ["mnli", "mnli-mm"] eval_datasets = [ raw_datasets["validation_matched"], raw_datasets["validation_mismatched"], ]

for layers in reversed(range(model.num_layers + 1)): for eval_dataset, task in zip(eval_datasets, tasks): metrics = trainer.evaluate(eval_dataset=eval_dataset) metrics["eval_samples"] = len(eval_dataset)

    if task == "mnli-mm":
        metrics = {k + "_mm": v for k, v in metrics.items()}

    trainer.log_metrics(metrics)