Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +10 -10
- ppo-LunarLander-v2/policy.optimizer.pth +1 -1
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: -133.88 +/- 35.82
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a7d175f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a7d17d050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a7d17d0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a7d17d170>", "_build": "<function ActorCriticPolicy._build at 0x7f3a7d17d200>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a7d17d290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a7d17d320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a7d17d3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a7d17d440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a7d17d4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a7d17d560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a7d1bdc90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 96, "num_timesteps": 2064384, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651748333.0761514, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAADNzGrpIS5y6oj2dO2anqLWk97s6UrO1ugAAgD8AAIA/AKR1PKjzqT2dEd697UNzvg/4PL0yA3k6AAAAAAAAAABmHiE79nR2utIvjLvXilc2zeOMukNGybUAAIA/AACAP5osGT32AAO6CJNzuzLo6rbTdiK70NOMOgAAgD8AAIA/GnsnPtuXdj/gHSQ+/x6vvnC1FD7iHIK9AAAAAAAAAAAzFV++I0LWPmAXrT6C3HO+bNOEPOYXTD0AAAAAAAAAAM20Fbtcayu6vT9ouayNurTGmQE6NkqFOAAAgD8AAIA/M0J3vaxO4jwFASQ+7jKWvRLxhjtWACU+AAAAAAAAAADN+SU9jwJounJtFbv8YNS1ASgiuw7fLDoAAIA/AACAP01xNb1cD2+67sYrumbB1jOCqxq76h1DOQAAgD8AAIA/zW8vPddDKblKt567qW3SNsmcurtVob06AACAPwAAgD+ae0s9AgweP0vy0r1Gxke+FMyXPIBop7wAAAAAAAAAAGZbQD24ttG5zc7DuhxbgrW7rEk7w3DnOQAAgD8AAIA/s1MhPa5bgrr7ZYi7ZCQ0NnopH7sTQJ06AACAPwAAgD/N/m49MWLHPTUcsz2Am3W+aV+LPQ7xR70AAAAAAAAAAL07gL47A2g/uMyKvbs/mL4fnE2+xhmcPQAAAAAAAAAAYANjPgaZFD9uQ/y94C1rvqKvVj3mlAg8AAAAAAAAAADNzEg5CgciuSsLgrx9fqK7KneiOu8MMj0AAIA/AAAAAM3NzzwUgIe6nVaOOWY1PrOX8WK6CZSiuAAAgD8AAIA/zQCIu8MlebolwjY775iHNZXn+zoGcFC6AACAPwAAgD+aFMW84LFHP9jHa7zNCGC+axIxvSj/gjwAAAAAAAAAAGZwfrxc2xK60uIdPBWr0jTqcz65k6HdMwAAgD8AAIA/MzVuvc2ZPj97geE8HUmSvl+vwr3P0cY9AAAAAAAAAABmAos8XNN0ugY0BryX7m20vtN7Oo1p+DMAAIA/AACAP2bIGz32/Da6A6GwOn4lrjzi1re5vkeWPQAAgD8AAIA/ltZvvo8zjT+v06++sCWpvnmaeL6+/Im9AAAAAAAAAADN8Mo8dBuzP1hvAD4Vzoi+PCkVPWacTT0AAAAAAAAAAJp+bb0UDIO6q7+DPGO7MbaS01g7BQcetQAAgD8AAIA/GoMWvSlQIbpXJKA6ZCSotao/PjrmKbu5AACAPwAAgD9Njae9cV1tue4HSjwKMKs11u8lu33IqDQAAIA/AACAP43Wgb2F65A4K+zNupIhKzYpx9w7m7j1OQAAgD8AAIA/5l12Pfb0Wbro6Vu6M2xVtp3blrprLng5AACAPwAAgD8AYse891sOP5EzybzXq32+qxVdO8U35roAAAAAAAAAAG1hBj661Yg/6ScZPi2O174k9Qg+Biq1PAAAAAAAAAAAzRxSPbimgblz8j28H5FzNru+qbvaPeC1AACAPwAAgD8AI808UpiEuTwzi7rLLd+1qP1nO4dspTkAAIA/AACAP7PfRj1cy2S6QJZEOs7707Xtv8E6PqNjuQAAgD8AAIA/AG3PPEPpsz+pWB8/E9LLvfgyjbxa2dG8AAAAAAAAAAAzIa08KRA9uqXrfTlajf61Hf6Ku8qJ9rQAAIA/AACAP2YkL7y4VsW5LhnoumtfTrVt9tS6fswKOgAAgD8AAIA/ZlgMvMNxYLoCBx074N9cuallwjo6nSy6AACAPwAAgD8AWd28e0SAuhQyCLyjgMI2qWUouzO/LLYAAIA/AACAP2aRojz23Ee6PnqKOx4zaje95b66nt1VNgAAgD8AAIA/TfYjvT3qcrmeaNs6d6voNXHrujvOqAC6AACAPwAAgD+Np4w9jw5Buqb8izuGdNo25MmiOTyGn7oAAIA/AACAP80MBLzDLXq6djwqu4THL7bI5wa7IC1DOgAAgD8AAIA/M881vXtulbpRJQU6hEpUNbiT0Doq9i00AACAPwAAgD8Aoi08XOs+umZXe7szG9g3WNWuOym2LDoAAIA/AACAP2YXyzz27BC6wy3FOiHKybV+JEq7tuzTtAAAgD8AAIA/BrsNvuomNj6Tk7k9T7lNvqPi8rwrOfA7AAAAAAAAAADmb189hQPGuQdeS7vgNHa29Lo5utIFajoAAIA/AACAPzP9QzyEZnw/qqQyPYZ8or4tc4S9CixVPAAAAAAAAAAAmmdLPaQEPzoSjaY68gchNiqyAjoCqMu5AACAPwAAgD8zIlW94T7TupA/krziBx29hscWO6JdCT4AAIA/AAAAAM0VUL32UEa6EEbOO2sC+jfOCg+7I4QrNgAAgD8AAIA/5kVDvr9hUj9aTRw88PhdviSir73SIYU8AAAAAAAAAACalsu8KShGuoSPF7o+cEu1WTGQugIYLjkAAIA/AACAPxpC6736T+Y+2UszPjQ3e743+0G8MAtVPQAAAAAAAAAAANjIPFz3fbqDW1a5kxQZOfanMDtOiTI4AACAPwAAgD+AIxO9sJyqP/bTmr6Sc9e+4IGhu0OVkr0AAAAAAAAAANoRoz1SoMq5jZhzO/LnW7k72Is7WsVAugAAgD8AAIA/8y4jvjNNUD/eyzS+JjOLvj9Qqr2zp6u9AAAAAAAAAACzZho99rxSunJUNzqWYo02+mypur3NVrkAAIA/AACAP57Kyb5wwnw/WBXKOkMssL4I5ba+obE/PgAAAAAAAAAAmgQ8va45krr6wH45M1RIM7E7g7qLppG4AACAPwAAgD8zhFQ9j6o1up4eH7y00pk5/YL8OjCDDLkAAIA/AACAP5rwOD0pIEu6+BJlOofy/bUZ4pS6HvGCuQAAgD8AAIA/E2Q2vtspubw4aVi8+40Fu27vIz6I6dE7AACAPwAAgD+afig9KVh/upIiVDnewHmzb/2ZuoOjcrgAAIA/AACAP+a9Lz3hXIW6+4eqt7zyMzZWglm6Wz2ctQAAgD8AAIA/AFq8PTqjhj++XA4+zYqpvtuA2z2agJ89AAAAAAAAAABaFp49ZKCbPywiqD7WF6m+fYilPcoIyj0AAAAAAAAAAGYc4jx7ZIe6aD/kOr+TOTZ4Mzg7W4oCugAAgD8AAIA/AAh7Pc6oqT1Is3U+jCpIvmQcqz0GIRC9AAAAAAAAAACa5t+87MnOufJI2DmDihw2YeGZOn8OFDUAAIA/AACAPzO7CzzhGI26H8mUui8aUDiQyJK7zhg0OQAAgD8AAIA/GlzPvY+OXboDIYy68JQWtgM0gDq1gaE5AACAPwAAgD8AEAu9dgQovPI48btJ2TU8cKucPSJ+G70AAIA/AACAP5oAozx7jsy6fhuHvPQzIb2piZg5Km8YPQAAgD8AAIA/ZptZPkqs1j4lE5K+UX2fvp/Nu72MtYy7AAAAAAAAAAAAD0A9H32MuQRSLLlVvJu0VkXHO6boSjgAAIA/AACAPwAoAjyPwgW4JE+LPDKpqjzAhJ47fbwbPAAAgD8AAIA/TaNPPeESirqWtAA7Yvv8NQ0bFzvvdxK6AACAPwAAgD/TM04+8weLPx3xVz5Pt7O+yS6gPr9rO7sAAAAAAAAAAHavhj7v/64/6RkgP5qDyb7JLqA+mkxUPgAAAAAAAAAAZuTPPIXL+Dh6TKs64dIuPB+VgTqD0hi9AACAPwAAAABmJjc9jxZyuhUQRDombHA1l00dupt5ZLkAAIA/AACAP80uzzwfPa65ukgPvFKgFTb7aaM6eOWHtQAAgD8AAIA/K1KHvu1Kmz8Am6C+3HvOvruui75FpYa8AAAAAAAAAAAAcJ870pvZu+7KljyjiL88jn8uPTJrn70AAIA/AACAP3Md0D3hILK6g/9ou6FXjTfHSQE6bm8qOgAAgD8AAIA/zcwiOUhXh7qXzsM7o9WSN+41pjpgeMA1AACAPwAAgD+aO0W9KYQRuhum/zpd7kw1GhcRuyDDQDQAAIA/AACAP80M3Trh+t24wQVDupr3GzbLF7g77tRpOQAAgD8AAIA/WhXaPd9ObD6lOSa+ebpCvicNZLx676o8AAAAAAAAAABmOam8j3J2ulLpj7sFESk3JDwFO+KuZjoAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLYEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV0wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLYIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.032192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYAX4bnM0ZECUhpRSlIwBbJRN6AOMAXSUR0CkxMnmig01dX2UKGgGaAloD0MIaLEUyVeBZECUhpRSlGgVTegDaBZHQKTE782rGR51fZQoaAZoCWgPQwguVP61vI1gQJSGlFKUaBVN6ANoFkdApMajuWrwOXV9lChoBmgJaA9DCJLPK5764GBAlIaUUpRoFU3oA2gWR0CkyAFPi1iOdX2UKGgGaAloD0MIH7+36c+VYkCUhpRSlGgVTegDaBZHQKTKZd4Vym11fZQoaAZoCWgPQwhvSQ7YVWVhQJSGlFKUaBVN6ANoFkdApMsBpUPxx3V9lChoBmgJaA9DCIDY0qOpAmVAlIaUUpRoFU3oA2gWR0CkzJYvvjOtdX2UKGgGaAloD0MI0qkrn+V5ZUCUhpRSlGgVTegDaBZHQKTNC2OyVwB1fZQoaAZoCWgPQwirtMU1PvRhQJSGlFKUaBVN6ANoFkdApM4jRtxdZHV9lChoBmgJaA9DCHY4ukr3d2JAlIaUUpRoFU3oA2gWR0Ck0Bd8qnWKdX2UKGgGaAloD0MIAhHiytkSY0CUhpRSlGgVTegDaBZHQKTQIWgvlEJ1fZQoaAZoCWgPQwh5ILJIk3lhQJSGlFKUaBVN6ANoFkdApNJy1JDmbXV9lChoBmgJaA9DCNMVbCOevWFAlIaUUpRoFU3oA2gWR0Ck1YLGaQV9dX2UKGgGaAloD0MIt2CpLmC+YUCUhpRSlGgVTegDaBZHQKTXl6Q/5cl1fZQoaAZoCWgPQwjYLJeNzqFiQJSGlFKUaBVN6ANoFkdApN6zcAR02nV9lChoBmgJaA9DCLZoAdpW3FdAlIaUUpRoFU3oA2gWR0Ck3ubHyVfNdX2UKGgGaAloD0MI6WLTSiFEYkCUhpRSlGgVTegDaBZHQKTibi0fHPx1fZQoaAZoCWgPQwjsTQzJSddhQJSGlFKUaBVN6ANoFkdApOTU+mm+CnV9lChoBmgJaA9DCL4tWKoLL2VAlIaUUpRoFU3oA2gWR0Ck6cihew9rdX2UKGgGaAloD0MIxjGSPcJ2YECUhpRSlGgVTegDaBZHQKTrNZfUnXx1fZQoaAZoCWgPQwi0Oc5twudiQJSGlFKUaBVN6ANoFkdApO1Ae7tiQXV9lChoBmgJaA9DCNKm6h5ZOmFAlIaUUpRoFU3oA2gWR0Ck737JnxrjdX2UKGgGaAloD0MIccYwJ+gkY0CUhpRSlGgVTegDaBZHQKTxLdN34bl1fZQoaAZoCWgPQwhxHHi13DddQJSGlFKUaBVN6ANoFkdApPM183Mpw3V9lChoBmgJaA9DCGH+Cpkrl2NAlIaUUpRoFU3oA2gWR0Ck95XOObRXdX2UKGgGaAloD0MIZK2h1N7TZECUhpRSlGgVTegDaBZHQKT4MdZJTVF1fZQoaAZoCWgPQwiH+l3YGutiQJSGlFKUaBVN6ANoFkdApPqwr4Fia3V9lChoBmgJaA9DCH3Qs1n16GVAlIaUUpRoFU3oA2gWR0Ck/gZ26kIpdX2UKGgGaAloD0MI+Uz2z1OxZUCUhpRSlGgVTegDaBZHQKT+Q76pHZt1fZQoaAZoCWgPQwgawjHLHm1jQJSGlFKUaBVN6ANoFkdApQQO0E5hjXV9lChoBmgJaA9DCNBHGXGBcmdAlIaUUpRoFU3oA2gWR0ClCYtihFmWdX2UKGgGaAloD0MIAaQ2cXIuWUCUhpRSlGgVTegDaBZHQKUMd8v24/h1fZQoaAZoCWgPQwiGAraDkTpnQJSGlFKUaBVN6ANoFkdApQzfoq0+knV9lChoBmgJaA9DCCOHiJtTe2RAlIaUUpRoFU3oA2gWR0ClDX7jT8YRdX2UKGgGaAloD0MIRUjdzr6dW0CUhpRSlGgVTegDaBZHQKUNhNXYDkl1fZQoaAZoCWgPQwhkJHuEmgllQJSGlFKUaBVN6ANoFkdApRAviaRZEHV9lChoBmgJaA9DCLow0ovas15AlIaUUpRoFU3oA2gWR0ClEbMolUqAdX2UKGgGaAloD0MIYAK37mYGZECUhpRSlGgVTegDaBZHQKUX0/8l5W11fZQoaAZoCWgPQwi1T8djBp9lQJSGlFKUaBVN6ANoFkdApRkcO09hZ3V9lChoBmgJaA9DCJm5wOWxTF9AlIaUUpRoFU3oA2gWR0ClGo8ZLqUvdX2UKGgGaAloD0MIcSGP4EbLXUCUhpRSlGgVTegDaBZHQKUky5fdAPd1fZQoaAZoCWgPQwgSF4BGaYZiQJSGlFKUaBVN6ANoFkdApSYdOj7AL3V9lChoBmgJaA9DCJj6eVMRLGBAlIaUUpRoFU3oA2gWR0ClJ517hNucdX2UKGgGaAloD0MIw7rx7khxZECUhpRSlGgVTegDaBZHQKUoEFB6a9d1fZQoaAZoCWgPQwiG/3QDBddaQJSGlFKUaBVN6ANoFkdApSjlBnjABXV9lChoBmgJaA9DCJ0q3zMSa1xAlIaUUpRoFU3oA2gWR0ClKUPX9R77dX2UKGgGaAloD0MImfIhqBpOZECUhpRSlGgVTegDaBZHQKUtMkleF+N1fZQoaAZoCWgPQwjAXfbrzvlhQJSGlFKUaBVN6ANoFkdApS4WU2UB4nV9lChoBmgJaA9DCDUnLzIBh2JAlIaUUpRoFU3oA2gWR0ClLiOXeFcqdX2UKGgGaAloD0MIL00R4HRRYECUhpRSlGgVTegDaBZHQKUxm1k1/Dt1fZQoaAZoCWgPQwgPJzCd1hZkQJSGlFKUaBVN6ANoFkdApTGnrnkkr3V9lChoBmgJaA9DCKgBg6TPZmBAlIaUUpRoFU3oA2gWR0ClN7q0tyxSdX2UKGgGaAloD0MINlfNc0QSY0CUhpRSlGgVTegDaBZHQKU4KrDqGDd1fZQoaAZoCWgPQwgJpS+EnExhQJSGlFKUaBVN6ANoFkdApTn2VX3g1nV9lChoBmgJaA9DCMWtghhoSWRAlIaUUpRoFU3oA2gWR0ClQZ8vmHQAdX2UKGgGaAloD0MI3e7lPjmpYECUhpRSlGgVTegDaBZHQKVEkf0VafV1fZQoaAZoCWgPQwhcH9YbNTNgQJSGlFKUaBVN6ANoFkdApUYeAf+0gXV9lChoBmgJaA9DCNHOaRboLWNAlIaUUpRoFU3oA2gWR0ClRkQxN7BwdX2UKGgGaAloD0MI7dYyGQ7JZUCUhpRSlGgVTegDaBZHQKVH9wVj7Q91fZQoaAZoCWgPQwhM32sIjgxiQJSGlFKUaBVN6ANoFkdApUgtDIBBA3V9lChoBmgJaA9DCFrxDYVP+WJAlIaUUpRoFU3oA2gWR0ClSMeeWfK7dX2UKGgGaAloD0MIn3O366XVZUCUhpRSlGgVTegDaBZHQKVKQbo8p1B1fZQoaAZoCWgPQwhLPQtCeSVkQJSGlFKUaBVN6ANoFkdApVKhZOi35XV9lChoBmgJaA9DCEVGByRhFGJAlIaUUpRoFU3oA2gWR0ClVZbu2JBPdX2UKGgGaAloD0MITuyhfSynZECUhpRSlGgVTegDaBZHQKVaLCLMs6J1fZQoaAZoCWgPQwh9XvHUo7hgQJSGlFKUaBVN6ANoFkdApV1gSHuZ1HV9lChoBmgJaA9DCKOQZFbvjWBAlIaUUpRoFU3oA2gWR0ClYIh/ZuhsdX2UKGgGaAloD0MIVtgMcME1YUCUhpRSlGgVTegDaBZHQKVg8wMYuTR1fZQoaAZoCWgPQwhS0y6mmT5kQJSGlFKUaBVN6ANoFkdApWH3w1BMSXV9lChoBmgJaA9DCKxSeqaXXGBAlIaUUpRoFU3oA2gWR0ClZTXBxgiNdX2UKGgGaAloD0MIT7LV5ZRYYkCUhpRSlGgVTegDaBZHQKVl3cfNiYt1fZQoaAZoCWgPQwhoklhSbr5lQJSGlFKUaBVN6ANoFkdApWhSHRCx/3V9lChoBmgJaA9DCBCTcCGPDmJAlIaUUpRoFU3oA2gWR0ClajM72cridX2UKGgGaAloD0MIzTrj+2LyZUCUhpRSlGgVTegDaBZHQKVrf5nDiwV1fZQoaAZoCWgPQwj6CPzh5/dlQJSGlFKUaBVN6ANoFkdApW8bMcIZ63V9lChoBmgJaA9DCM7drpem3mBAlIaUUpRoFU3oA2gWR0ClcW8Pe54GdX2UKGgGaAloD0MIhVypZ0F2ZkCUhpRSlGgVTegDaBZHQKV13ZDArQR1fZQoaAZoCWgPQwgsYthhTLRjQJSGlFKUaBVN6ANoFkdApXlNOCXhO3V9lChoBmgJaA9DCJvmHafoZlhAlIaUUpRoFU3oA2gWR0CleypDmbLEdX2UKGgGaAloD0MIe4ZwzLJ6Z0CUhpRSlGgVTegDaBZHQKV84CTUy591fZQoaAZoCWgPQwixU6waBClgQJSGlFKUaBVN6ANoFkdApX2/CdjG1nV9lChoBmgJaA9DCMvW+iKhSmFAlIaUUpRoFU3oA2gWR0ClfwamXPZ7dX2UKGgGaAloD0MIaAjHLPt6Y0CUhpRSlGgVTegDaBZHQKWGXcvduYR1fZQoaAZoCWgPQwgtCVBTS9NlQJSGlFKUaBVN6ANoFkdApYZpfYzzmXV9lChoBmgJaA9DCF5HHLKBcmFAlIaUUpRoFU3oA2gWR0Clh38zQ/ordX2UKGgGaAloD0MII93PKUjoZUCUhpRSlGgVTegDaBZHQKWI8mReTmp1fZQoaAZoCWgPQwiUZ14Ou/teQJSGlFKUaBVN6ANoFkdApYrdTFVDKHV9lChoBmgJaA9DCAzmr5C5iWNAlIaUUpRoFU3oA2gWR0Clix7OVxCIdX2UKGgGaAloD0MIu+1Cc50pX0CUhpRSlGgVTegDaBZHQKWLkQQL/jt1fZQoaAZoCWgPQwiasz7lmFJcQJSGlFKUaBVN6ANoFkdApYwASnLq2XV9lChoBmgJaA9DCA9fJoqQ9mFAlIaUUpRoFU3oA2gWR0CljO6y0KJEdX2UKGgGaAloD0MI8nfvqLG3Y0CUhpRSlGgVTegDaBZHQKWNM6xPfsN1fZQoaAZoCWgPQwiga19Ar1tlQJSGlFKUaBVN6ANoFkdApY33Hggow3V9lChoBmgJaA9DCGufjscMk2NAlIaUUpRoFU3oA2gWR0CljfqGtZFHdX2UKGgGaAloD0MI24toOyZ5YUCUhpRSlGgVTegDaBZHQKWOCMLncL11fZQoaAZoCWgPQwgEPdS2Ya5kQJSGlFKUaBVN6ANoFkdApZA8u6ErXnV9lChoBmgJaA9DCGt9kdAW/GFAlIaUUpRoFU3oA2gWR0Clk59Jrcj8dX2UKGgGaAloD0MIKII4DycPXECUhpRSlGgVTegDaBZHQKWTyQQtjCp1fZQoaAZoCWgPQwj36uOh73dbQJSGlFKUaBVN6ANoFkdApZVsB+4LC3V9lChoBmgJaA9DCPDAAMKHpWNAlIaUUpRoFU3oA2gWR0CllsLOAy2ydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 168, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a7d175f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a7d17d050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a7d17d0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a7d17d170>", "_build": "<function ActorCriticPolicy._build at 0x7f3a7d17d200>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a7d17d290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a7d17d320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a7d17d3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a7d17d440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a7d17d4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a7d17d560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a7d1bdc90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1024, "num_timesteps": 2097152, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651753349.7764466, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdoAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAgAAAAAAAAJqc7zxFS8g/SDTrPVMIkT4PV0q9x6G2vAAAAAAAAAAAbREGvjLyxD9a5dO+CtjpvTmuiD6WBqg9AAAAAAAAAAAAGcI9Hzh3P5N6njzmIU+/qnZbPiLp9r0AAAAAAAAAAPPaO76HtKA/nv0Gv7Sl6b5SVSc9SEfcvQAAAAAAAAAAuJTyvuGBjj2UIpi+v7ujv0EHub7KmzY+AAAAAAAAAACAjxi9pWK9P04IXr4izZY967LaPH2e2zkAAAAAAAAAANpYqD2vmag/0jwtP3D++77jX/i9MdwAvgAAAAAAAAAA2NPKvhcZib064hM8lTcNvZw5IDy26JI+AACAPwAAgD9zuBy+cI3JP5ho4L6prh++nFw7vgJ+bb0AAAAAAAAAAPNLLL40Hpg/yUkZv0SHCb8RPU4+vo8oPgAAAAAAAAAAjXH5vTJ3mT+kBDi/2nMdv8YdZT7X3ZU+AAAAAAAAAACao968IKCwP35jdb7kuXK+dm/OOcdNPb0AAAAAAAAAAGasjLxKTMI/9VBtvS6LDL7OHoE9SxldvQAAAAAAAAAAQ/JivsOarT70GUm/UHqav2HIYz9eVwu9AAAAAAAAAADNlZa8KKN3P/WKUTxzUWm/TRaCvvUgEL4AAAAAAAAAAL2qVL7UFPg+cEB7vvK6eb+Dboy+jmQIPgAAAAAAAAAAjcYpPru5mD/FaB4/Kmccv2CFUrxoR7Q9AAAAAAAAAACaH869YGHBP2WgC7/8C649EHejPRAtgzwAAAAAAAAAAO1SgD7sYZM+ot6wPmJ8oL9XgXm8+w2uvQAAAAAAAAAAAFANu0smqz+b3iK9lXzRvjk2JT1ZwsQ9AAAAAAAAAADKcX0/GesNPzbdZj/iVYe/DzIPP3Px7j4AAAAAAAAAAEA6Db7pnZE/p8pCvyZoLr+xZ6A9disEvAAAAAAAAAAAs9x/PuMtuT+pGQQ/JDqYvspJtL1gFca9AAAAAAAAAABm/Du80k63PyJ+r718fNG8nA+NPC2iM70AAAAAAAAAABomDT3fjr8/U1Q9Pr6WaT35V4C9LXZSPAAAAAAAAAAAG2mkvuLDtz6OThK/Wuilv1tjhj21oCK+AAAAAAAAAABNrl89V7y9P9rOUT4vylO9EOc4vbNbgL0AAAAAAAAAAE31eb79X9A/qZWYvnSAp76QfZq9CzZ3vQAAAAAAAAAAZslKvXnEtz8oUAq/H+WZPaAzKD0qv1Q9AAAAAAAAAABNaFk+d4QbP7jqGz9wj4u/eWWdvvHeLb4AAAAAAAAAAPMOhb08lUE/ogX0vZboZr9I7Ca+cV2xvQAAAAAAAAAAkyk+P5avED0+NHM+/VarvwMAnT40OJy9AAAAAAAAAABz9YM9tAmfPyZzxD57ueu+vokmPYax+z0AAAAAAAAAADPZEr5ecok/eFHnvialUr+L4Uo9onO5PAAAAAAAAAAAYKYHvizbtz9Fd9S+KuSqvmvbjz0gCuY9AAAAAAAAAABj9ZM+rKEOP0xUzD6Groq/M8BLPi7baz0AAAAAAAAAAJpdoD1+L78/AtbXPi+wLz3sjJa9H9CSvQAAAAAAAAAAmrNsPDJakz9SIII9H1Abv98a0Do53gE9AAAAAAAAAAC2KGK+sH1dP9Pnp75qDHO/gZncvWtuWr0AAAAAAAAAAECr1j0vcZw//SmxPqXb3747A0m+kfA1vgAAAAAAAAAAM2cfPDQCGT/itvI9G5KPvxVUor5FHqm+AAAAAAAAAABmpto7JNKPP+Drpjw9KEW/PEZBPEKahT0AAAAAAAAAAGY84zxR1WY/l5UHPv+aJL8TxSa9NnlNPAAAAAAAAAAA2imIPQ7erD9KuZU+7EaNvg+VkT231y0+AAAAAAAAAADm73A93KDAP3+fCT/eAJE+7IjqvIMWiLwAAAAAAAAAAJpIsrzie6E/TaYuvgWVAb+l65w9XkksPgAAAAAAAAAAihdBP2tSIj9Fpok/Ubpyv5idyb4jbzU+AAAAAAAAAAAmBZA9Fw+GP0qh7T0Xdme/iKiCPQJIYj4AAAAAAAAAAOjK2L6z21E/IhfUvlJvVb83/ZG+5wKcvQAAAAAAAAAAzay2vUyEhz+JN6++JwdLv3P5vT2eScY9AAAAAAAAAABmZrK3LbqyP3bXjbo21ay+KC8COMbVfDkAAAAAAAAAADNEPL3T97Y/BD8GvrRWnL7ynqo92G6tvAAAAAAAAAAAZr6/u3fosz+RvBe/ZT91voNo3juHewk+AAAAAAAAAACtBAY+RvOaP9i1kz6mhBy/R0bEu/7IALsAAAAAAAAAADTIPL/HSQI/2ruMv5ceqb/vPWs/ml4fPgAAAAAAAAAAGiAMPi+4xD87rgM/k3hSvSnoJL5yKaC8AAAAAAAAAAA6vyQ//EZfPjYyUT+Qva6/O+9bvl61Zr0AAAAAAAAAADM/mTt1NIU/gO1/PfKkJ79Jwlq+dKE+vgAAAAAAAAAATVhgPtSYKj8AceU+LZmLv2rSyr5LOuw9AAAAAAAAAADNx9S8T2JNPxpSIL06ZHe/wMdVvUWGzjwAAAAAAAAAADOvNj97CTi+2LhkP8uWwb8B9Ma9JTTbvgAAAAAAAIA/M1MOPriviT9xzso+VPZSv9MmVj1Q+F0+AAAAAAAAAACa/qW9UhKuPnuxKT6kX5i/WFCpvt9XEL0AAAAAAAAAAADkwbuwALI/dbFJvQE9F77RIoc7QmoIvQAAAAAAAAAA/kfVvvmsJT7uBhC/Ajqev0rhJ73EKI69AAAAAAAAAABmctG9vUyoP0n8Gb+yDbG+sTA7PviMWz4AAAAAAAAAAFqA/D1E7aI/aBVwPrfdIr/HBvK8IlfIPQAAAAAAAAAAGBKVvkth5T1daDu+cF2zv8Zigr69QQE9AAAAAAAAAABNFVQ9yaRnP4CzDz4tn2G/saitvaJ/Cb4AAAAAAAAAANoO6r6oK7k+DTDLvg/Ln7+pYEK8Ei0fvgAAAAAAAAAAWuDhvoheiz4cfau+T1OZv/t9mT3BlhC8AAAAAAAAAAAtsv2+rjGGP9llLb/+WCO/6agfPkCyYz0AAAAAAAAAAPO4Ez5GNbw/p64gP8Vgn70AwJ+8PsDKPQAAAAAAAAAAVY2Tvj6tLj8kHC+/gEGav54lYj+FRtE+AAAAAAAAAACaPUK8YJZYP3ZzJL13koS/N+GKvXuJP70AAAAAAAAAAOb2gz2xkMI/LCQpPiFOWL1hdts8qOS1vQAAAAAAAAAAM0z8PCjutT/r0eo9zQ1Dvnp1WjwT/fI8AAAAAAAAAACgKIk+M6q3P6QZHz8fULK+IHcZvolbGb0AAAAAAAAAAE1U6z3mHJE/nNsgPwUITr9fRwW+CrBovgAAAAAAAAAAFuw4Py4xDj/rUAE/9k6Hv5omLD74YBW9AAAAAAAAAAAt+As+MxjHPy00sT7VSoS9rS6FPSrL+j0AAAAAAAAAAM1Y2zzWfUE/becTPVTfeb+bamo+ctuHPQAAAAAAAAAAAIURvfJjsT9GC+C91we9vhmQAz6qNnC9AAAAAAAAAAAABBu+pzQHPyv/mb5rPKS/Mnhcvop1abwAAAAAAAAAALP0FD3xhYk9apGCP13MY75AxyPA6qQGwAAAAAAAAAAAZmgDvgC1OT9LuIi+GcV1v8bRN73g1Nm9AAAAAAAAAABmj7G98B2pP/Ip2L4QKLO+kNI0PiISFj4AAAAAAAAAADM8G74ojXg/OmN4vsDbNb+CLkS8/TqIvgAAAAAAAAAAWutDvlydrz+ItU+/qWqCvunMVT695Xw+AAAAAAAAAACJFDq/O6LYPfqzgr+SbJe/FyWFPoOwxb4AAAAAAACAP7DpmL4m6y8/km8Ev2Ujjr+NZWg+5JUHPgAAAAAAAAAAoDjQvtE0hT+3fia/VCQsvwibzL0bAuO9AAAAAAAAAAASrbK+FmtKPQ9IAr8hcJq/mP4qPwi8fz4AAAAAAACAPxHRLL8QVpU+C6dbvyvjp789Rtg9LqQovgAAAAAAAAAAZpGWPpJQqD9yMEY/j8cBv5D9ub4NFUy9AAAAAAAAAADNX2E+PbLbPhbSoj4V0pi/fQWLPuglCz4AAAAAAAAAAFPPWz4Dv1Q/qYYXPn23Yr+gEvw+49RJPgAAAAAAAAAAIw7VPihXB75SqhA/U0S3v14EZb3Thaa+AACAPwAAgD+G3bA+9AfYPkLy3D4hnp6/+NctvY3dkDsAAAAAAAAAAG2HaD5CPKA/JiDnPuJ5Ib9ccPi9yrlvvQAAAAAAAAAALeyZvpMEET8Vihu/33uVvxP9F74TZEm+AAAAAAAAAAAztSY8ecfIP6ZxG7ydJjU9uhKzvU7xnD0AAAAAAAAAAIB+3z22D5o/+DLVPuK6Br/t5wW+Wpc1vQAAAAAAAAAA6veTvtnrbT+pARu/i/Nhv4PnWD5oKJs8AAAAAAAAAADmSJc+EnuPPzBfPT9TXD6/lgHIPQr/5j0AAAAAAAAAAABC2T3qwqc/atoePls+5r4SEfC7JNCkPQAAAAAAAAAAquuHPhOthD7j5Gk+i9SKv5CvFz4KHhA+AAAAAAAAAABmvYm97SjfPkWS2r1EWoS/cZDNPKfYPj4AAAAAAAAAAMAvsj3994Y/PoCEPktrRb+WzlG9Q+ObvQAAAAAAAAAADhnfvp8mQT9WQlq/toiEvyRmMz8ycYQ+AAAAAAAAAAAgJl0++IsZP1jvyD4T/Zq/reZjPn6/Ez4AAAAAAAAAAC0DfD64eY48Lqp3PsZeur+09VM+GrogPwAAgD8AAIA/k3VTP7zk2T6Ky2Y/6s+Fv6gneDw4ECk+AAAAAAAAAAAqHuk+JbyYPiLGUj+Ecnm/SMoyvveVM74AAAAAAAAAAACK4zwZjVw/GuOLPQS7QL8wDVi9UPSFvQAAAAAAAAAACJa/vtnAMj/Ukzm/Y3uGvw7fZj69/KY9AAAAAAAAAAAzX3I8CXe2P/oPuz4u0/o9jGACvF0KW7wAAAAAAAAAAM2aSjw+0rE/41OmPm6jj754BrG8fUkYvgAAAAAAAAAAM0SxvahRvj91kue+J0WLPcl+8z1UXck9AAAAAAAAAABaB1o/rfpzvrNjZT+gI8K/7mU1vktJgT4AAAAAAAAAAIorxD4q9lA/GtQHPzMBgr/9L869dfOzPAAAAAAAAAAA2G4VP3qJXj9tyT4/rdVsv+V5hr6clKk+AAAAAAAAAAAicLm+pvmVPzNRNr/3SjS/8XrFPkLN3z0AAAAAAAAAANPDbr72wTQ/mTiivle5gL9SZAa+9d9evgAAAAAAAAAAJlXJPnBX9z7UDkI/IgWRv064JT2msMQ9AAAAAAAAAADWTxi/pMeXPyLtg78ZyCu/F8GSPtiFcL0AAAAAAAAAAM0L5Tx93V8/SAalPRtTP7+kY4i9HGvCPQAAAAAAAAAAmsKjPTkSBD9dcSk+ft6Rv7NLbTs6CZ48AAAAAAAAAADIW6S+DDdyP1kbtb7nqHi/7nmzvqfiSr0AAAAAAAAAAION/T7BjQI/m2d3P6CZkr8ZIrO+h1ebPQAAAAAAAAAA7VELvtajjD+C1+i+UiU5v83OG72+J3a+AAAAAAAAAAAgYs8+/dcWP2ACQj+JZ4y/hsBYvqY8pbwAAAAAAAAAAAD4cLsnY7M/opEAvMoUdL58io896yHKOwAAAAAAAAAAAF7nvGltaz8cnQ6+wpI1vxtChT696vI9AAAAAAAAAAAAzVK9/IC0P1a9H79WQ8i9UbyQPFyeLr0AAAAAAAAAAGDFgb6dH2c/B/g3v76MZ79vkNM9ONL7vQAAAAAAAAAA8FpZP9PUlD96RXc/nfw8v6Zqcj69Mck+AAAAAAAAAACz/uk9YXaYP27Quj6g6RG/iWgDvU30Az4AAAAAAAAAAGYeQDzUak4+0ZAlvasNh7/shBi9ZjVrvAAAAAAAAAAABqOrPsw4ej9GcqA+hC81vyEbWz5dAKY9AAAAAAAAAACzc/c+Ti6KPhzMET8BbYi/UWv7PNpEBDwAAAAAAAAAADMzq7nR5LE/gvZCvIYC976mT5C6RVravAAAAAAAAAAAM7tbO0xJtT+F3q0+uc50PuUqfrsziZ29AAAAAAAAAAAgl5k+pG84Pxw2Lz99sZC/ZIM2PlKeYD4AAAAAAAAAABpdhz0v6rE/drWDPoVReL6HghE9gg7oPQAAAAAAAAAAE8MVvm3lLj8jsV6+HRBcv1sbwLyyH9e9AAAAAAAAAABzJIE+YpbDP9qyPz8USRe+kSRAPSjdbz0AAAAAAAAAACawg70Is4Y//XSbvX/oM79ioEm+bQdpPQAAAAAAAAAAo77PPkXAjD8GQSc/Jk4tv5G7tb14UNi8AAAAAAAAAABtSx8+aSryPvZUej702ZC/pJdpvYpPE7wAAAAAAAAAAJoZJTkJ5rE/SkMCPM589r4RLTa5CPLpugAAAAAAAAAAQCsMP9faSDyTpU4/AZbbvyYbXr9pmMA8AAAAAAAAAABmlsU6Zbq5P1s+bTtTNLi9VTqCO0Solz0AAAAAAAAAAN0ZDD98pAK+lxoYP+Nqlb9PBh4+TIc3PQAAAAAAAIA/c7OMvdUDAz7CXFW7tgutv5Cn2r2q+5o9AAAAAAAAAAB67js/7kiAP83FUT+2oT2/7HdNPjBO3DwAAAAAAAAAAHMvR76VYoo/jr3WvgtaH7/X+m0+1jPrPQAAAAAAAAAAreI7vqRlwj//PJK+ub/XvjKtEz14Y1U+AAAAAAAAAAAAFG68GBOyP8oR/L4bBaO+0nB1POPB4j0AAAAAAAAAAGY3u7x1UbI/I8JYvlo9Jr4n+lA8ycuMvQAAAAAAAAAAxpQYPgYIkT+m67o+RRogv1Q8tz1bupU8AAAAAAAAAACmUda9rubEP0n5kb6voA6+BIMGvV/ytjsAAAAAAAAAAIByub5XbuS9OshGvJn3ATzbzPI++OMbvQAAgD8AAIA/U5RLPjawoT/x3BI/8GHuvgS6qrxl1re8AAAAAAAAAABAbIY+Xu64P8vHET8PQbW+9tVYPSJkJj4AAAAAAAAAAGYSJjwqObU/7gYZPh4OSr1J51a8LzRGvQAAAAAAAAAAeiAbPqvQpT+lDNQ+9UTSvnNNsz1LwAc9AAAAAAAAAABmnNu9U/DDP3uCjb6AuBa+wpo9PkJYDroAAAAAAAAAAIALUz0rX1Y/8HP9PeQrZb/JHYm97UwNPgAAAAAAAAAAAoqBvjgM6DyJ2oy+gEOzv/j4j77AY+C+AACAPwAAAADNLjk9w+4AO5kwRD6m166/Xx1wvpkZBL4AAIA/AAAAAFdoA7/elgI/qeQWv8v/pr8CvLw9ss9dvgAAAAAAAAAAzSz1OjaBnj9sAQ09TDT3vk9gD75rtYy9AAAAAAAAAAAGT3M+aVsNPuYTnr6O+7K/w2xDPx7B0LsAAAAAAAAAAMCLjL3Zor0/eqzsvuNFXT1lXPg8guH5PAAAAAAAAAAA5sqSPXpptD+qTiE/pZ2vvag8gL10UDC8AAAAAAAAAAD9avW+A07YPt43Yb8gTo2/saHXPgZEkr0AAAAAAAAAANLpAj98lYk/xStbP2bzT79oFpu+uwJ3vQAAAAAAAAAA5uwuPux7sD9ewUE/HhFjvoP/IL6muCW9AAAAAAAAAAAzB4Y8t0/AP7bXPj1UpdW9ovZMPujTZD4AAAAAAAAAAE3c7z0VDOM+KjmLPmMzir+LtAW+E6INPgAAAAAAAAAAA1OkviOTiT8LoBa/zJcyvzqrBD6KS4e9AAAAAAAAAADNfrS8h+azP1qvEb+Qf6e9baMJPajOVT4AAAAAAAAAAGadzLxm8bU/ugYlv+ol3j0/xgg9n8ArPgAAAAAAAAAA80NYPg04hT9t+1g+5Bs4v0Gahj7zAmM8AAAAAAAAAAAmbvM+98YnP6z6BT91G5C/DX/zvN9Wrz0AAAAAAAAAAA1+qT5BK0s/ev80P7LKWr/uFug7OaG3PQAAAAAAAAAAZjCWPNEvtz9aGQc9qj3Wvr6Gczyq0pE9AAAAAAAAAABmKgE98buqPz6mwT1FWKm+028HPlZixT0AAAAAAAAAALNpUD5J/g0/qKIkPsXUmb9MRVA+Ff+6PQAAAAAAAAAAs3FPveiEsj9j6Ca/hrEBvqTTGT1I06I9AAAAAAAAAAAzlvC8oB+uP5VCjb7+zIK+O2hHPVv8vT0AAAAAAAAAAHMF8D7luAQ+FagoP6S4t7+Zrwq+ka4XPgAAAAAAAAAAIwUwP659oD1fYRs/32WavzlPYr3VzhS9AAAAAAAAAAC6ABQ+19fFPnJSoD7wtbK/mrRNvpd8M70AAAAAAAAAANqKdz4LSrI9lrBcPlarob9P0oc8GMNJPQAAAAAAAAAAxpWQPghjgT/rGMU+3D5ev7vlAj5+PNQ9AAAAAAAAAAAGh0u+s+a0P2OC8r6wiqu+8tYUPt5w4zwAAAAAAAAAAAB0JDzQbrM/tpUCP+n6Sr7UOje8YHzdvQAAAAAAAAAA8welvVR1nT/yZhG/GQ01v3V5aj3XGR+8AAAAAAAAAABmN3c99ZG2PtJbDz5pppS/dUoZvYEuBz0AAAAAAAAAAA04ur2FPLQ/K/xVvh2t6769l+09+Z4ZPgAAAAAAAAAAij12vjYXjD78Tru+A0OTv/PfhjtCn+i8AAAAAAAAAADgXDg+3XR9P7bsyz7wgTe/Hu+KPXKjcz4AAAAAAAAAADYB9b5jEw8/u4UgvwT5mL9HEdm9dg+LvgAAAAAAAAAAmnFoO4yptT/27bc+Gz69PhRzhruupqa9AAAAAAAAAAB98Ni+pnubP2vHXb+dsMq+SLoRPuPq+7sAAAAAAAAAAOYdKr7Dj4E/tcVPvrubG7/DbKO9BNCWvAAAAAAAAAAAZoZEPOme4j642vW9WTqevy6IIz+Vplg+AAAAAAAAAAAghBW+d9xqP4055b5ZYX+/9ou5vTHQtr0AAAAAAAAAAMb+bb4MSIE/6//rvqsX876MuMs9mgjCvQAAAAAAAAAAM18GPIxKvT/8QQS97Mywvr7knj1arxU8AAAAAAAAAADNRAU7m+JZP/05WD2jL3W/D9dTvXVgt7wAAAAAAAAAAIBpOj0dk7A/GocgPoCrjr7EGBG+BsS6vQAAAAAAAAAAxmoOPnhPoD9yxj4/sHQKvwFVBL4Vlq29AAAAAAAAAADNmoI9uvEWP1cjOT7+Voy/UnffvY57RT0AAAAAAAAAAPPKRT5bBzw/OrWoPr7BhL9f6zG+4kPVuwAAAAAAAAAAWnOFPcFWtT/nDCw/9ZAOvV1l5b2qV2C+AAAAAAAAAAAZoxS/IUiVPnVkWL/NEpq/U3xsPg03OL4AAAAAAAAAAKZAp71FOa0/g9lpvgkR6b4M34I+4NmwPQAAAAAAAAAAXTObPveJTT/juV0/xYNTv9XlC78qv7q+AAAAAAAAAABQgrY+C3+5PQv/7j7JPrC/Z9kEPg7RwD4AAIA/AAAAAEqt/T4v7Q8/Q/sqP1xBlb/tS1y+ZUnQvAAAAAAAAAAAmtlrPf91vj+bW3s+PI1TvaqplD071hA+AAAAAAAAAAAAN9e8UZnCPx6dDb5AVjG9UJE6PSZ42TwAAAAAAAAAAPNUgj0zMas/HbRqPvXEpr5MHK69IxIMPgAAAAAAAAAAzdjnPJDuuD/Yon4+XmBdvDoYjbwrpo+9AAAAAAAAAABm2kS9Yl+5PyBGdr1fiba+mh3jvT72Jb0AAAAAAAAAAFAzxb4oDaY/7ykpv413GL8Ueu89ea+sPQAAAAAAAAAADfuJPUu6YT9DS4o+/FGAv5ixPr4SCMy9AAAAAAAAAACazru8/2OvPwckCL4uuKa+HVWxvOMdZzsAAAAAAAAAAJrDbrwMybc/raL6vhdjrz4bWJk88t/oPQAAAAAAAAAA817QPagsnj9IL7s8Y8YsvyynJD/+q7I+AAAAAAAAAACaB5m88DS1P6IYx74ZYjU9suTMPA3p+T0AAAAAAAAAABYZXb7xYxM+1RK9vsERxr8b1nq+tpySPQAAAAAAAAAAzRKVPBFHyT9LQWs9b5FqPp2Vj7xSAla9AAAAAAAAAABwH4e+86SBP7mpDr/1KTW/dj00PgvJqrsAAAAAAAAAAI35Nb7ti1M+huW5vWGol7/kswa+bYJ/vQAAAAAAAAAA2u5kPluFgT9g0ec+niAkv5TvWLwzb4a8AAAAAAAAAAAAee49lqFpP7bBHD6hKz+/QK/MPfvnYT4AAAAAAAAAAE0RPr1jyLE/mk1Gvxovar5WMkw9r5gLPgAAAAAAAAAAmrxnPahXqj+AIjI/28sFvxigdL1V/rC9AAAAAAAAAADGO06+iH+qP/M0eb68iRK/wk1+vvZ1bT0AAAAAAAAAAABvzT1Y3K4+9b5vPpJDj7+ZnFi+FGQAvgAAAAAAAAAAzXIjvav9rz9u04m+shhOviBKabwGKia9AAAAAAAAAACGxsy+G3mPPkzzCr/TtJa/RxWGPUbzLr0AAAAAAAAAANq+sD1dd4k/lvMnPtdoEr+Ht/A9kXiXPQAAAAAAAAAAZtYhO+xTrD+pV6A8rpLwvj23GDzzf3I9AAAAAAAAAAAma+G9j1IXOWArXzu1bPi40V7iOk2VJboAAIA/AACAP5qTGb568pc/OzgAvzlvHr+Zkvy9SnBmOgAAAAAAAAAAgCZTvQrvsT9R/jC+pE+jvptRzj0W4+89AAAAAAAAAACG6BS++ZGWP6CrPL+5wDi/KuYYPXN8cLoAAAAAAAAAAF3AzD7sVYw8LSljPlLTjb4/YQNAW9+jPwAAAAAAAAAAZhfUvFJUiz+jaMS9Wz9Qv2OJyjzaA3Q9AAAAAAAAAABmVvE99zrCP3jA7T4vPa685P+0vCadzrsAAAAAAAAAACXs8r5NWhw/AP1Uv58Oer+uxYE+lSFVvgAAAAAAAAAAKycqv7uM5byPRi6/rEO0v7Zenr5Yduu9AAAAAAAAAAAIlsm+O9kaP3IRVb80IZS/HiFpPtC5mD0AAAAAAAAAAGYw9byJ3bU/ZgADvqa3NL63Hc096sIlPgAAAAAAAAAAQNIaP88PHrzOOnU//l6gv2/LDL6Vkq09AAAAAAAAAACaaqo8V7ytP/YBBz9tqSK/UfisvAUS570AAAAAAAAAAFoP9j3eD4E/A5nYPoPCd78W5NA8YtZ1PQAAAAAAAAAAfSabvhgkwT8OIWO/f2iZvTbaaD6zZ5o9AAAAAAAAAACmDWA+rbVIP+HvlT4mAYu/PmYROo7fkT0AAAAAAAAAAPqhnD6n4V8/mj+FPkwLcL/Q9hc9NLSTPQAAAAAAAAAAWo9mPvxzQj+HrYM+ch5av53/Aj4e9yA+AAAAAAAAAAAw1cI+vCMXPsAE9j6iv6O/cLO5vJUyLD8AAIA/AAAAAABTxrwen7M/awEbv/rc4b1VD788/NO+PQAAAAAAAAAAO024vtTLlT7dRAK/pmCGv7ctrL3IAE+9AAAAAAAAAACaWfQ6KqWvPzvqUj3rgRm/emU4O/JRbD0AAAAAAAAAAGZfRz8P+4A/ycGpP2daar+XVmG/c+dsvgAAAAAAAAAAxlI8vn2sSD/EMZO+tSOCv5Pn2r0xmCA9AAAAAAAAAAA99ca+rT4gP2ru171JjoO/FN/8vrfeBr4AAAAAAAAAAEDShj169ao/7rKrPlD+m76ZQqC9D5ivvQAAAAAAAAAAmKHvvryTij9CE2a//TAiv07PSD2lvii7AAAAAAAAAABNsWe9LJefP3tKpL79lRG/iJwYPnf9Nj4AAAAAAAAAADN7TjuMR7Y/6u0jPdvsgzxXwZA70Te0PAAAAAAAAAAADVEOvhB9wj8UhD+/UBInPglMVz3Vt2U9AAAAAAAAAAADAh8//dKFPlkLOD8066C/adhfvYvMYz4AAAAAAAAAALKfw77fvSU/0Bxmv6I8hr8pOEo/aGf5PQAAAAAAAAAAoFgDvrAFjT/GVS++3HAmv3rZg7424rC8AAAAAAAAAACapyM+sfcTPv5cYz6XlZa/9oR8PVJK0z0AAAAAAAAAALXfub7ySKE+Vk0tv5FTpr+EWoA+fhSEPQAAAAAAAAAAQP6CvXpzqT8rmo2+yVPBvk5FFj7LzjM+AAAAAAAAAAAzHRA8JSqXP+xxr70H2wq/4VkmvavS0r0AAAAAAAAAAKblaz7YP0Y/qsXDPrysh79WAFq+6gj/PQAAAAAAAAAAQ/CRvnuyFz/91dC+s+uLv+7hRz73D4E9AAAAAAAAAABAEKs9WOaOP6G5kz6Pp0q/H7G+vfVi+zsAAAAAAAAAABO6n778vsg+urmVvqBbhr/az3++GIxkPQAAAAAAAAAAJv6dPRRMQz9ynzY++wBkv/FHBD5wCei8AAAAAAAAAADanKY+nv6sP+3VET+fSvu+i+0ZPgIkRz4AAAAAAAAAAHMykT0M3dk/sEZTPi8Sgb3wzbu+Yby1vQAAAAAAAAAAmh76vaiTWz96Tju+DvVWv5JsOD294Ug9AAAAAAAAAADNUhi9LkOzP5LHt75M3yG+w/0ePXVg8zwAAAAAAAAAABNcYj5wPJI/V2coPxIbE7+lBGW+aAQTvQAAAAAAAAAAc0eDPb9G1T6EzEe9L/uTv1fryz7oOQ48AAAAAAAAAAAm1qY909CfP93pHz/Mzja/32Z/veacir0AAAAAAAAAAIp2sz53Wu4+QCI0Py+djr8qPqW99vnEPAAAAAAAAAAAs5/vPdB8pD9GbrM+7mC1voqPOz3Q40m9AAAAAAAAAAA2T+S+LZgDP8phVr9EhJS/FuQwPiBrsT0AAAAAAAAAAM35L75T64w/qAEEv2zjL7+EDJo9fk25uwAAAAAAAAAAszO1PdLiiz8WWRc+5VHyvodT2bwsTK69AAAAAAAAAABtlt6+vbIAP0UdOr+x2I2/87whPg3DBr4AAAAAAAAAAJo5lbsunXI/u1AVvRUja7+5s9s94oDtuwAAAAAAAAAAM0wTPX9qkz/31xc+aRghv0unDLwNidW8AAAAAAAAAABmBmC8fIeyP/aYqb78lmC+tI8WPGUDzrsAAAAAAAAAAGbpnb1toao/UuGGvY/Mgr5aQqG+OQK3vgAAAAAAAAAAU1S6PqOATz1OFBM/NdirvwFy2L1imBE9AAAAAAAAAADNw/w8Vre8P55wnz1fvO69UHsfPtNjYT4AAAAAAAAAAF6rxL5c8bw+XgUDv349i7/xGDy+BNyLvgAAAAAAAAAAdnKxvn4fXj+9cvC+MQ6IvwgFfL51xOy8AAAAAAAAAAAzo8K8rP+0PxIT+b5uaZo8ezvHPJLPuj0AAAAAAAAAADPrLDw39r4/O3HVPQ/0dT6HjJi8fmvGvAAAAAAAAAAALaJbPrebrT83CkE/OZecvmKDFL7Ns1e9AAAAAAAAAACmw7U947jPPoIsAz4tx6e/GMvwPUK7mLwAAAAAAAAAAGBS7r5yZ08+gHAYv/zAiL9GRSE8sJuJvQAAAAAAAAAAZpvuPPF3oD/LH9E9ruLovoSLNL7dAlw9AAAAAAAAAADIUYC+rKsPP++PoL4m/m2/C8aOvrI96b0AAAAAAAAAACYb9L0Qhr4/Np8Vv0JfhTuqNwo9DmskvQAAAAAAAAAAphcoPlbksT/atkQ/i/BWvovJKL6ljoq9AAAAAAAAAABmQns8Lb+0Px0Jwz6TYvC70ZOevH7z1L0AAAAAAAAAAMUOBb/EM2Y/QHfrvrEbf79VLyi/C7fovgAAAAAAAAAAzRHIPcgTpj+aLcg+qjnOvo966DyavWc9AAAAAAAAAABmbPg9AxZzP28imT5Gwzi/9gNyPYnPFD4AAAAAAAAAAAAasjzcdrY/4Tg6P9xqQj4bRL+81iEJvgAAAAAAAAAAMwjdPEd7pT+tiaE+Lcgtv7jIhb2VVjm+AAAAAAAAAADN4gQ8Uk3FP0J9SD0TUfQ8cc1CPRRhsj0AAAAAAAAAAEbYJ76rkp8/+1SNvg4wC780CTk9uG9XuwAAAAAAAAAAM3C2PGcwdT79poe8fky1v+LGVT4LJwQ+AAAAAAAAAADNHwu+4L2fPyD6/L4XLdS+HTxQPfJGI7wAAAAAAAAAAHJq8770yF4/xgNYv0Z8SL+kf3A+249mvgAAAAAAAAAAzdQJvrMNjD9Kmyq/hQdHv5Sfsz2oAPI9AAAAAAAAAABtG0m+/Yh/Pw3GL7+LL3K/Jn6cPjtPnj0AAAAAAAAAALpwJT/hjWg+btiXP8tSxr9R+aS/SodzvgAAgD8AAAAAmuMEvPyokD8IcD2+gRsKv4kykT7LTRI9AAAAAAAAAACzwVy9s9uGP8JsA77wFly/auImPaKDBj4AAAAAAAAAAJPdHD5JXCc/irn/O2MWkb9gwwK6xTvivAAAAAAAAAAAndUUv0mquD/oV4i/JbnBvr9Lzj5sbza9AAAAAAAAAADmx2K+/P/MPw/pJb9/sBO9MGRevbu0/r0AAAAAAAAAAAaZTD7B0Kg+pROcPozJrb9qrr+9vXu4PQAAAAAAAAAAGnQXP5uDiz3+IG8//R2sv1Ugob6osN89AAAAAAAAAABzHrC+om/KPn4DLL+sxp6/htnTPU4ZCj0AAAAAAAAAAJo7VTwMi6M+mkOuPYx5pb/dBCi+SswIvQAAAAAAAAAAmgncvXdXdT9tEb2+uXxGv48hNj4sVwU+AAAAAAAAAACwy/4+eL2oPH06ND8Otqm/XgimvTJZxr4AAAAAAACAP+2ToT4b2CI/bv8MP50Vab/b6t89LGwWPAAAAAAAAAAADTbmPf3Duj+jNxI/mXPOvdyIWL50ZjC+AAAAAAAAAACAvNY+c4hBPwYVNz/mqIu/Lt4Dv0pPCj4AAAAAAAAAACof3b4EuAk/XsAav+0SUr/W2dw86ncAvQAAAAAAAAAAre3xPv8cVD+FIC4/uaFxv5UDgr0TXwC+AAAAAAAAAABlIhk/0gz8uyRRITtr0QI5XrHQvEKkKzoAAIA/AACAP5uqwL5vDhI/w0YRv2FVlL9DHKe+rlGEvgAAAAAAAAAATYd8vshTZj9msDm/UP1Fvygpjz2o5zc9AAAAAAAAAAANpry9nBmiP25h3b6K+gC/6JnfPTUkBT0AAAAAAAAAABpaFb5LTp4/+rMrvz7m8b4g8CI9GpkgvQAAAAAAAAAAGiYSvUfksT9+WF++7UsuvoBI2ztQ/do9AAAAAAAAAAAzphc+plOdP2aflj7duxa/6MoZPh1+1rsAAAAAAAAAAECWir1NMbA/wPgNvx3Lc77hDqI9rjgUPgAAAAAAAAAAM0d+ve/Toz9knjS/VgBBv4oanD32SEo+AAAAAAAAAADan649esCRPxPqhz6FQCq/U9rsvRIGNT0AAAAAAAAAAGZ73zx6yq0//nDpPpls276Qbq28UBm7vAAAAAAAAAAA41iVvph7vD/+Rgq/ugKvvsYACb7l/ka+AAAAAAAAAADNgKE8H07KP1zwGT06mLi90JZ1vQ6Cg7wAAAAAAAAAAAD5lz3Mgb8/eqI2Pkx+Rr5Hh9+5u/PauwAAAAAAAAAANrT7vkMwDD8uYxC/nfOQv6u1J75pEx0+AAAAAAAAAAATBOS+LIuoPunUDL9cpo+/zCPHvkOR1bwAAAAAAAAAAJrylTxuqZc/vujVPcoRPb8qCWc9ZL+ePQAAAAAAAAAAcvgBvw+Hej08XgU+CubwveodBj/EyyG/AAAAAAAAgD+jGco+icZqP7LKLj8xwoC/pU4Nvx52Kb4AAAAAAAAAAO3M6z6DzKY+1n94P6ndtL+KJBm/SowdvgAAAAAAAAAAzQrOvcYQnT/ORpS9bd0Av2vRUb5SD7m8AAAAAAAAAAAwJOC+bFQnPmXAKL99tau/b5hcvnbSJb4AAAAAAAAAAO1rMr40XoI+q4CUvtDrpr9KweE9MpmSvgAAAAAAAAAAsORNvvSDsj9iICG/DEAavuNaHD45Lxw9AAAAAAAAAAAgFJM+VD75PvN+GT81+Zm/Eu/FvWw9CDsAAAAAAAAAADrTG76vtP4+9ddevh//ib9KXI29JkKlPQAAAAAAAAAAmpgOPWM6tD85uhA/UxShvduXE71ef2K9AAAAAAAAAADtmwc+ouLPPm66qz35hK+/0GLyPlNNWT0AAAAAAAAAAFoJtb4HaxI/yQE3v2K3gr/8D38+KFI/uAAAAAAAAAAA8yz2Poiipj6cUxw/51+2v5fcAr5c87w+AAAAAAAAAADNhmu8PvG0P2y5OL9tKkA9fFpxPLUhAj4AAAAAAAAAAG6Avb7NYJc+v97Evo8ekb9F0l6+uuUYvQAAAAAAAAAADT2sPvLKlj9+ekY/x8k4v5T06r7yS0m+AAAAAAAAAAAAgOY6g2q4P179hD3LodQ+ogJkuyFbM70AAAAAAAAAAPgxtb7UJ7s/wRscv1WIwb65pRw+nprmvQAAAAAAAAAAIAikPi0CYT/NUnI/lb54v2tO1b5cE6a+AAAAAAAAAAC6J4k+IKvAPsB9ND68rIi//YcEPvOYJbsAAAAAAAAAAAuNqb5QGe8++ngmvwhTiL9qTrY91q5CPQAAAAAAAAAAAFzNuyeAsD+l4JC9wYWCvjGLHDzkmR87AAAAAAAAAABmuNC9lhysP3FiMb/zcqO+RjMDPvf7Lz4AAAAAAAAAAJbUxb5bAV8/eqlnvwMeX78OfQs/78Q0PgAAAAAAAAAAiT1yv9fATTwm1ui/V22HvyvK6z//yLNAAAAAAAAAgD9a1Go+W5W0PrkmxD5h8Zq/vdcGPVKwhD0AAAAAAAAAAEZWAD8y4dc+4o89vhMvrL/+65c/4RO7vAAAAAAAAAAAGq1RPWRsoz8yZ4+8s+wSvyVv0z6VJZc+AAAAAAAAAADN4YY8ncm4PxEeDj/Nyeo+dPOZvDO6/r0AAAAAAAAAAG1/Ab6GiMc/WndWvwfDzj73YyI+koNfPgAAAAAAAAAAPo0Wv0erfT5EtTa+Lviyv6/xKL+OwKw8AAAAAAAAAACzJKS9A8a6PrFFJb64EYS/yUnvPY1aUrsAAAAAAAAAAD5Vmr4xvww/LRedvhmrWr+5N0W+1EFDvQAAAAAAAAAATYYCPWJIVD/4Vl49khJev6D49L0EIYo9AAAAAAAAAABaNYq9EbuYP26nwL2rkR+//J6FvS5QtL0AAAAAAAAAACY8TT5ezq4/ir4zPh3JE7/8wAw+PojUPQAAAAAAAAAAxE4ov+IYJT+kF4W/a+havyamlz662si8AAAAAAAAAAB4duS+AkdAP9V0w74VfoG/i2bavoWBvL0AAAAAAAAAAOajTj31B8E/FknCPmKmhD51sK28FJiYvQAAAAAAAAAAQF+iPr2yhT8ByUU/YeUQvz7hU75KyTS8AAAAAAAAAAAjiJI+5deJP4qZSj8aYCu/l0qovj11C74AAAAAAAAAAJrzcLxSnqg/Zk5qvnl0K79rhts8w+4SPgAAAAAAAAAAOoA4Pn8sHD/g9Ak+emZnv67OUT32SUw8AAAAAAAAAADY6+e+qthaPz3fhL/twIu/jJShPw7Brj4AAAAAAAAAAHY4zb5vYMW94uCFu1NAPTwsY088TB0AvQAAgD8AAIA/tki6Pi+Kbz++uRM/gx9Hv8mGnL2J9Ic9AAAAAAAAAADNImk96AmxPwM7dD4ZYXq+yqcSPY6LCT4AAAAAAAAAAM3GlL2ANok/ludfvvWDOr+7wGu+cPBrvgAAAAAAAAAAWkvfPh2xbT9Ojcc+R1Nqv6YWGD7rrjI+AAAAAAAAAAAaQ8w9MedxP0qJMD7lQmq/NFdZvtXZDTsAAAAAAAAAALOI+L2IBZo/OinNvjTyAr9EoXI898+nvQAAAAAAAAAAM0eiO0I6tT9azAk9vz6wvUCSc72u2LG9AAAAAAAAAAANl9m9qAKnP+cvk72vm0W/lfHMvk2uib4AAAAAAAAAABMJ1D6yOY0/SSU0P/7OLL/33RE+ggMnPgAAAAAAAAAAJjrovfxKhD+b4eu+I4Vnv6cIbTy32Rg8AAAAAAAAAAAzD6g7xUo1P35fpTwxkku/4NMnPQYCST0AAAAAAAAAAIAZAL3kCtA+PbR9vgD5mb+KzZA+ikA/PQAAAAAAAAAADQ6HPULlyT8Fij4+A0ObvQd+eT1Okyw9AAAAAAAAAAAm0sY+x/gsP8I1Dj9JOY2/EymJvo2fcD4AAAAAAAAAAJo4Ej6lDR0/7UBzPlIIkb+Gib09Ul8uPgAAAAAAAAAAoFpAPqFwvj2RC7k+/qa9vxGT3z3dLJo9AAAAAAAAAABmru68dt+sP9128r7+J9q+Smf7PAhmCj4AAAAAAAAAAM3qVj3yAbE/EsUmP3ruZr4/TCy9xiQ6vQAAAAAAAAAAAK6fvVs1PT+D3Nu9Dk5qv55ihzw0+pE9AAAAAAAAAADNyxQ+sB6tP1AKVD+iBI++7P0Ovoiigr0AAAAAAAAAAIM/jT6tgsI//W01P2QLeL6M/Ay+9yMmPQAAAAAAAAAAzbj9u383tj+EgMi+jFOJPnaFETxRzbM9AAAAAAAAAAAgOyE/sYFoPt7wlT//272/aR6rv9pC/b4AAIA/AAAAAB3e4L5RnhI+DTprvl1Fh7+Y4k+9eOMlPgAAAAAAAAAAANhku++3VD9AXvI91/dAv3mHh76TfJq8AAAAAAAAAACjAYk+ZyztPhKABz9zLZa/7z7cvbUOPj4AAAAAAAAAAKpkxj6srbo+toxJPwO4mL8boxi/AyCzvgAAAAAAAAAA7a8KPlb+wj+aqE8/MG/aPczEKr7DqQm+AAAAAAAAAADNLoe9qSC2Px7JO7/Za0c9bBqzPaIBRD4AAAAAAAAAAGL0rr5ZcbQ/5I8Qv0k26b4t3KW8WqgBvQAAAAAAAAAAgwItv/+wlD6EKpy/MEy7v6CQwj8kfAM/AAAAAAAAgD9mljM73qu1P2Yajj7j2r4+4aZPuwnBgL0AAAAAAAAAACDMEL407I8/T9WKvhBXMr+tOL67Tu3BvAAAAAAAAAAAvsX3vr4e7T5r12a/1VKmvzY4HD+bxms9AAAAAAAAAAANpTG+BNqOP87RSL90ulK/jL9SPsiZIz4AAAAAAAAAAPPToz40v4k+GNfRPpOwlr8OcYu9IMrJPQAAAAAAAAAApoE1vmS4rz8Vzd6+wg2VvppgL73oYa69AAAAAAAAAADTTGk+5kGgP6K7Ij+UbyK/VPWZvn4oxr4AAAAAAAAAAA0WlL3GKLk/4jyhvmaWh7wOzkQ9tZEnOwAAAAAAAAAAZlGTPLbHrD9+7IQ+pbjIvrjDNzyi/W09AAAAAAAAAADN5ge9WjItPxhjXj4mema/t0JTvoOr2D0AAAAAAAAAAKphfb7k0P0+qC3Kvtc2bL/Bsy29H2IsvgAAAAAAAAAAmiu+PCCaoT/go0Q+kETuvmn86TuQ1IK8AAAAAAAAAACNNOo9jqyYP/IzLD8UzEO/R3eOvS14er0AAAAAAAAAAHYBtz5RGp4/IG1GPxD0KL/C0WO+pqO1vAAAAAAAAAAA2p5pPtN4ij8LztE9yr8sv9dn9D4aojo+AAAAAAAAAABzdNC9bDy2POrezT5mCHS/a1svv+ojdb4AAIA/AAAAAAAlmb3FLzI/KK/XvQLLYr9l/ko8EHgePQAAAAAAAAAA7lclvzQNij1u/ZK9sc5xvNU2pz+O45s/AAAAAAAAAABtv6s+0oajP3+BLj82cDq/FJ43v+wDC70AAAAAAAAAAIB/Rb2p7t4++tL3vXHlnL8x9GQ85qNavQAAAAAAAAAABupKvmG3dD82Mem+BNNCvwFair6WSWW+AAAAAAAAAAC60B4+W258P5PZPj/PVIC/hpFgvgoLt74AAAAAAAAAAAaFVD9Fhcc+/EWCP6z9r78UaoS+QOklPgAAAAAAAAAA7U1OvvGVsz8b99m+rbzuvnQgkr6aRkK+AAAAAAAAAAA00ga/DoH/vCTyt76nFJ+/8K8Nvz2eW74AAAAAAAAAAJrJ5zo33LE/aczBPRnD+b7fuXG7iBhevQAAAAAAAAAAA9yuvnK+gT/yWQO/iidwv1BtUr1aIYU8AAAAAAAAAABmRu28V6tGP5Mu3D3kIoG/aFINvnxckj4AAAAAAAAAAJpJW7vcZ7U/MissvqqXHz64BYM7UQgnPQAAAAAAAAAAIMnxPpXyjj71HRQ/LEmZv9vY67379Eq9AAAAAAAAAACtG8U+GuXBP7YeQT8t7cS+6jGZvlKd8z0AAAAAAAAAAI0Ghz5Ltsk9h++yPn5CpL85/Wc9Q7gMPgAAgD8AAAAA80Vhvp0pFT6qrQO/ZEqrv2udFz8An9M+AAAAAAAAAADNXHg91J2kPw7ugD7k47W+oAa/vXHYDbwAAAAAAAAAAM3zzLxxIbQ/6xq4vjEqmb3eJbE8NhSEPQAAAAAAAAAAzTIFvFjrsT/tRs++l4L0vpgG7zszLk89AAAAAAAAAAAz6207zJWoPxpIgT1K4Ce/DYbTuBs1XrwAAAAAAAAAAEAbqT4bKYc/rH4/P2GNMb87ov88qK53vQAAAAAAAAAAs6vJvVqltD+d8Ru+P13xvoCj6rysKAq9AAAAAAAAAAAeyhC/UvRjPi34z75hfLC/DGExvucUw70AAAAAAAAAAGabHj2sXp4/HnZ8PlWVFL9vzqK8HvjavAAAAAAAAAAAhjONPhFpOj+j/QI/4lJnv7DpUb78Ah09AAAAAAAAAADA91w+wFWiP4qjCT8gluC+oWltvZ5O4T0AAAAAAAAAANp2Ir5PJpc/yktJvo0VOb8leTi+/jwYvAAAAAAAAAAA5vcrPhKgiz8wfGg+PQ82vwtj4btOToW+AAAAAAAAAABgarW+TsZoP2adTb9nRGW/rryhPpzzD74AAAAAAAAAAA0qgL1M36g//Xgxv4ch/b6pzLY9EG4XPgAAAAAAAAAAMsmpvpzopj4zPKu+o5Wev+XiOL7Iq+29AAAAAAAAAADNJTw9QRKiP2dAqz6WjRa/pnKHvAbo7TwAAAAAAAAAAPPX8j2ti1o/NV0uPiMZJL8Qop697tIyPQAAAAAAAAAA1iKfvtlxOT98v8i+J16Av16aBTwVLHQ9AAAAAAAAAABAqi2+d701P7uSs76VB4a/gR/jO/os6rwAAAAAAAAAAOalyb1DBI0/Q3sTvm+RO7+oLcS9688lvgAAAAAAAAAAwOyWvV/QuT9bBaG+XN4Hvrj0FDy0BxA9AAAAAAAAAADtUG2+W5uUvPRAqr6C65q/UstcPUhYwDsAAIA/AAAAALVpDb9A1Ew/HXtxv2tGQ7+ylQo/1ZGyPQAAAAAAAAAAmpohv6gL1D0btUi/bUWov9xgF7176Ms8AACAPwAAgD+aKpo8+PC2P2RwJT5d1gU93mKLPKqMqT0AAAAAAAAAANAvCz8I2Fw/S75aP3R3Y7+LA0U9TgraPQAAAAAAAAAAGuG+PqWitT9QeE8/91DCvogMq75cugK+AAAAAAAAAABmgn09EqCdPwgc9T4twh+/Sh7NvZNaK74AAAAAAAAAALNhzz7764M/cq83Py0JXr86q+G+eJfwvAAAAAAAAAAAXY+OPrTSgz8Yccw+FQsuv6mHMT0V95U8AAAAAAAAAADTC0w+r4OkP6CTAj9Aaeq+KUJwvu5Q1j0AAAAAAAAAAKYAPT6lPvM+3QITP9Sun7+/7RS/cpPFvgAAAAAAAAAAZnQVvS+6Xz/18ia+z/GMv7zVO74om4G8AAAAAAAAAAAAaOM73tCzPyrzMz8zA4u+1qQDvJYLI74AAAAAAAAAAM3McLq1xi8+c6vivKSqtr/U7+I9U9MHvgAAAAAAAAAAhngVPv0jmj/N0QI/ScYCv7n/yr7iEn++AAAAAAAAAADNt608MyupPz7H0j3veam+d+b2Omplyr0AAAAAAAAAAFodJT6eoS4/qiEFPmMdUr8ArVY+GsI5vQAAAAAAAAAA7QwNPsMOlj8+/xI/sK0Ov3C1Fr5moh2+AAAAAAAAAAAaMB89iTWmPtR/kD3KQJq/zMvRPbnCrrwAAAAAAAAAAMAqJD5U7OQ9angmPkbqsL/ZhDi+YAfruwAAAAAAAAAAoyVhvqlaxD91+k+/2k+BvQA43D6KYc4+AAAAAAAAAABQx6Y+uwohP4JuMT8AhYu/cJfcvhKjg70AAAAAAAAAAPZ7iT4IpsY+K5rjPt3dnr8c4V2+PtDiPQAAAAAAAAAAKO8AP4EniD945Gc/fvg0v1fxgL5CdzW8AAAAAAAAAACcAQe/JPtMPnsXT78vjrS/hyoPP6d+yT4AAAAAAAAAAPAqND8zyXM/xkpBPxqPar+D2k8+UkiNPQAAAAAAAAAAAGhpvnV/qT8S8L2+NFHKvmvlIr7LE2S+AAAAAAAAAACzGxs9aFSqPzDkHD8dkiW/5XH0vJJWJ70AAAAAAAAAAGYf/bw6+7E/IfNHv3Togb7qTQA9otQ1PgAAAAAAAAAAGsB3vqM9SD8VYxO/jrhWv6z8Hz4eFBW+AAAAAAAAAACaJKg8romXP66F2z3XG0i/vUNevKfFkj0AAAAAAAAAACAZXT7B0aM/VfXCPpf1Cr+QO709zBwJPgAAAAAAAAAAZslHvkWAHD97puK+LQqNv1ZRLb3oD2W8AAAAAAAAAAAzsxe9ormmP0PIWr6mAfe+KV9WPao9wD0AAAAAAAAAACYv4728bDI/dQh6vmKxcb/BEHw97fGlOwAAAAAAAAAAQDlwPmgN87z1lHw+38Kyv8FtJLt2GHA9AAAAAAAAgD9NynA9jewKPo6QWD6eepm/gw6Evn4uxb0AAAAAAAAAANoB4r4aJZQ/8tldvy8GKr8jCYg+ju93vgAAAAAAAAAAqonfPi28wj++60w/mTymvnDMTb5y0FO9AAAAAAAAAACY35e+biAWPzCcdb7BXJi/2dpyvkraKb0AAAAAAAAAAA0Ms71HIpo/TiOjvkkc8r6NrSy9DwjCvQAAAAAAAAAAZgCnvJuWqz/f6pC+Z4wDv2by+js3cAG9AAAAAAAAAABSPA+/6egsPnHTCL7ADZC/DEylvXyykTsAAAAAAAAAAGaW2DrnPKE/3hBmPJV7Lb8mIVy78+lKugAAAAAAAAAABo4Kvnl4vj9qXkq/9xrdPf4kET6BeQU+AAAAAAAAAAA2yGa+VoJ0P+ZQFb/RpVq/AFC5PYXz2TsAAAAAAAAAAEDLhD19roY/bXmrPUkQJb8K1/09LXVNPgAAAAAAAAAAHlCZvlh/Cz9GO0S/xsmVv1VPbT6m+Rg+AAAAAAAAAAANxo69M7O3PyC6Cr9NS1K9YHp4PGF4E74AAAAAAAAAALOqTT42E8Y++OkTPs5mgL8CPWU+Ky/3vAAAAAAAAAAAMwcAPMj1tT/XnUo/0SzyPms9FLwylTe+AAAAAAAAAABNqLQ9wwy/P0BYkz7OFEW+OI4pPckXiT0AAAAAAAAAAEAxr71kEH8+HmIevkr+gL/q8qs8k1dTvQAAAAAAAAAARp8hvkY2PT9XOrW+uaJmv56unz4k5Jq9AAAAAAAAAAAgZUq+QKuiP1+Pj751KAO/cIo2vqfliL0AAAAAAAAAAADuKj3mEJo/6CpxPv5RH79meUe9ZbGIvQAAAAAAAAAA+uSXPrzdgT8+h08/9dNTv7hC8r4C76O+AAAAAAAAAAAzFbo83h2xP10M8T7LT4y+z3bWvHk3Hb4AAAAAAAAAAOBpFb546DA/JuL2Pd2mUr/QVoC9DTeePgAAAAAAAAAAmg2tvRoHpT++FqG+DUQBv7TNoL3Ta169AAAAAAAAAABqAMi+3dATP7xggb8uHYu/MWipPhurbroAAAAAAAAAABqlcr18KYk/R1oFvmejBL9weXO9zFcCvQAAAAAAAAAAs4x7Pc5Pkz/0xjs9600gv+nZej4HLJU9AAAAAAAAAAAmrky+5I2UP8OU876WT/e+H5KJPlaFFD4AAAAAAAAAALBtf75hHh0/NxILv7cTmr/2i5I86tIrvgAAAAAAAAAAc0uXvdbgrD8AfaG+z7W5vnwv8DwlvvS9AAAAAAAAAACaQMs9nK2DPyieyD6V9m+/WLCovUrUnz0AAAAAAAAAAM1bpD1ghmU/vlMRPkSYhL/SUMu9Q2TzvAAAAAAAAAAA8xh/PrsuvD+lygs/gJBdvk+HEz6iJXU9AAAAAAAAAABthGI++pq/P6AhWj8RLLy815NPvog8UL0AAAAAAAAAAGpwET+xLbM/jo1eP2yEHr9yYa6+HYZvPgAAAAAAAAAA5sUrPTZGPT86Hns9Tnl3v5bLKz6WMBS9AAAAAAAAAAAzAzG7USm0P0x+Er7xEbW9qXOpOyCBlT0AAAAAAAAAAIgG5b4Xmok/nr9hv+3yNr9dd+U+wgjxPQAAAAAAAAAAyZhvv8/2Rj7gLWK/HjabvxUu4zy4+BG+AAAAAAAAAADNx4K8yB62PwI5Xb7fDqs8xz9FPPNayLwAAAAAAAAAAF1bob7o3/k+A6Jpvvi3g7/Ufx2/ErgFvwAAAAAAAAAA5uRfve1+rD/xega/dfi8vnemrz3iblg+AAAAAAAAAABqd1M/j1mPPkO8Zj/Xv5+/1wWSvY7omz4AAAAAAAAAAKMkgz6zCig/2ZCCPiryYr9e+I89e0UrvQAAAAAAAAAA5n2YvdaSHT8F8CC+DI2NvyGUDj0r1RU9AAAAAAAAAADt0JA+IXM1P4qMkz6eWGS/bOPiPNzMGD4AAAAAAAAAAPW+BT8lp1Q+uGuBP8kDuL9A3Fu/no4fvgAAAAAAAAAA5gMjPWgJhD7ivtk9OnCdv7vfaD2ibTC8AAAAAAAAAACaaUu7EteQP5iEQz0PKSa/8Hp6vuXzTL4AAAAAAAAAAGYBhrwuBKY/KGaJvSrj9L4/45e92QW9vQAAAAAAAAAADYKEPoE1vz++UEI/unI7vshOnL1OvgI9AAAAAAAAAAAdI5y+SFPLPwnDO7+J4jW+ojX/PCtxsj0AAAAAAAAAADPMSj369LI/iE80P/pFCL4npDW9myezvQAAAAAAAAAADXO8PcCnqj/M30o/XzO2vvFwy72fziW+AAAAAAAAAACajei9yHGmPzUsOb/Ta8K+wQPNPWvUtT0AAAAAAAAAAACAmLrU6bM/qmTxvf9Vc77YmrE6W7faPAAAAAAAAAAAk3psPpBqnD+CY1k/ehYTvwDOwr5bW3S+AAAAAAAAAACaeIS9pJGKP+k1v73qezu/16OBPUgOnTwAAAAAAAAAAA06mj5/kqg+grbSPmxtn7+0deg9Z7qyPAAAAAAAAAAAYOH4PmoYEz66+A4/F++Yv9Okqj3ymaM9AAAAAAAAAACG6Wc+/Nm/PwNIQT/1kbS9fW+Hvro2hL0AAAAAAAAAAKaxgD0CX7Q/h8RIP2OE3Lt9RnC9To4kvgAAAAAAAAAADa2hPewqjj/lyaQ+sepIv1wcgr1or5k9AAAAAAAAAABmF4U9PLyKP9qD2D22Ti2/F863vXEuCL0AAAAAAAAAAM6xIL8pWSI+WN9Wv6Qcm7+6QS89QhthvgAAAAAAAAAAs5IbPpEulT8EaSw+B3sVv1FtCj4jaDM+AAAAAAAAAADN9ss+ns7nPlJmTz88UpO/tC3FvdvP0j0AAAAAAAAAAIAH3b2Embc+oqaDviJMmr9TexU9L90DPAAAAAAAAAAA8+m5PbI5wD/GvKw+QwzZvcN7lr3auoy7AAAAAAAAAABjLfI++X7UPpac2z6rG5O/ng2rPtIeUD0AAAAAAAAAANrGsj1vErA/ztO5Ppyjm769dg49+MFyvQAAAAAAAAAAZuLUuypJtD80RYy93LWAvqQaAD6aCTK9AAAAAAAAAAAaGLY9v8CiPxoaQj+ZbhS/YLy+vbosCb4AAAAAAAAAAFM4ib6PEZM/xo4/v952NL/Qvsw9bxQPvAAAAAAAAAAApmaEvtciXj9W/C+/1FR4v+8oMb0BM6W9AAAAAAAAAADjL8A+NjmmPz9SIT8ZkzK/HRyovlJxfb4AAAAAAAAAAGam471lS6o/2Pcov70WoL7LYJU9guqdPQAAAAAAAAAAgF0nPlFrtj8yhRU/l62PvvSKPL7t7ym+AAAAAAAAAAAz63m7saa3P8vk1TsSQHu+bIADvmA6w70AAAAAAAAAAB2mCT+cuwA/KqV5P1xZnr8seRq/odcMvgAAAAAAAAAAOlGnPkMAyD68TBA/Dp6Zvzpf3bww6cM9AAAAAAAAAAAwXcQ+fU4ZP/aP5D77sY2/Tr7YPtLIzj4AAAAAAAAAAJqOi72PvKI/VRD8vp98D78as4Q852ETPAAAAAAAAAAAQwDYvgK0Qj6YZBe/mTWgv18O1z4cHAO9AAAAAAAAAAAz4wG7Ujy+P/FVJrwxQSC+khvSunXd2D0AAAAAAAAAAKAyBr7Q278/cw8kvw/ucj1aAQA+I3gNPAAAAAAAAAAATUi6Pu4vtj+y8yM/6TLtvhYqer2f2q09AAAAAAAAAABmN3O9Qv7sPk2SXL3QaLC/y9eWvruZir4AAAAAAAAAAEDZoz2TJCA/+nmGO9Bjhr/0qXo9nY/lPAAAAAAAAAAATXWfPc+SeD0NBlI9sdunvzeKhD0ArLo9AAAAAAAAAADm1X49e3OmP/qQSD/UYim/4ZGSvV5IEr4AAAAAAAAAAADv2z7R4rM+/CqOPpdDo7/WAL4+Tn8bPgAAAAAAAAAAmsNoPvZ/FT/WNQ0+QTBkv8U1MD6+gx+9AAAAAAAAAABmQjc8NsnZPtq4xT26vZG/BLJzvoVGAr4AAAAAAAAAAM31dj5hnxY+VvOUvexEp7+YKIU+fi1vvgAAAAAAAAAAmo6jvFxaxj+Ner+9Q4BAPvzNUjxMhqY9AAAAAAAAAAAaKts9VxfAP+NeHz8/MyO5SegzvkYoi74AAAAAAAAAAC3ssj6p/gY/LywmPw3Rjr+k+8C+dl5wPQAAAAAAAAAAZopKPanvDD3WhVo+KjtVvSPmZL+FzYY+AACAPwAAAAATKw0+oiScP3Jiyz7gxfS+bJ4tvgxyMr4AAAAAAAAAAOY/Ir2q/Lo/snJMv8J62T5Q0FA9gMBGPgAAAAAAAAAAjY4gvoQBdT8cgQ+/a+1TvwvbxT0QwEo7AAAAAAAAAADXB0q/MXhqPniXfL8TOay/94X1PcBQa74AAAAAAAAAAGaGJTriSrQ/tzuhPDrx2L2IgZO8e921vQAAAAAAAAAAGnuyvb+OtT/C0vu+QxymvRauYTy4H0a9AAAAAAAAAAAarYw97GK9P5id/j47K909gllavf7Lt7wAAAAAAAAAALPrsz2UcpI/0TuXPupvIb9eUg+9nlQSPgAAAAAAAAAAgGI8vY4aqT/xTxS/JHQVvxtjVT10MgA+AAAAAAAAAABg4ci+IS9XPtBLzr5eGoq/GhVAvcLZrz0AAAAAAAAAAAC33Tw8b7E/BqrsPgM+PL7x8s685ee+vQAAAAAAAAAAZpF4PdJ0pj+eEoY+itHMvideGj3hvSc9AAAAAAAAAAAQU46+u3KVPuWn8b75nKy/Oz2VPraIlbwAAAAAAAAAALqqST+NCQY+S1VSP5l+nb/iTz2+e1qIPgAAgD8AAAAA4FtzPkIApD/mFM4+RqEavzpYkT0s7b47AAAAAAAAAADN6pk97S7BPi7EUD41QZm/M4dLvuCsND0AAAAAAAAAAADweLwTFbI/SH1Fvw1s3r6um4s89mkpPgAAAAAAAAAAAMjDO9ZwsD8Vb1M+gEr8vpAEmbsrfs28AAAAAAAAAABaK0M/S2uxPZiJqT/HYq6/kBZGv7YADr4AAAAAAAAAABDZgT56ajs/HmMMP9dngr+N4YM91dj0PQAAAAAAAAAAZmZAu3GJrz/UiSS9YMyivsBWpjziHQw9AAAAAAAAAAD9Jtu+xzriPuoUL7/g9pu/VCcFPSKUVr4AAAAAAAAAAAa1QT40Bhw/Z4CVPtcCfL9G80c+u8RmPgAAAAAAAAAAa/fhvn/8oD+QGN2+26Qrv+U7K72RBws9AAAAAAAAAACtiW0+vGMOP0qNmT5EOYe/B7/sPu5oUT4AAAAAAAAAADMsgz0hj7Y/MJ84P57gjz1BrLC9SshQvgAAAAAAAAAA5pTOvRtOkz7h6b698nenv9f2Gr4z1+29AAAAAAAAAACKt8i+lVInP1bx7r7uO42/pP4Fvl6bJz0AAAAAAAAAAACsPz2nYBo+cWaZPRQLq7/NAua9fmZWPAAAAAAAAAAAnUYFPxK1MT7vcyA/+9yzv4ub9b1UZ0A+AAAAAAAAAAAzYOS8QAyCPzprD77961u/EvQ6PjNOiz4AAAAAAAAAAAosfb597mM+GyJrvstgkr81bka+4gx2vgAAAAAAAAAAAI+nPjBVnj/tsEQ/xvECvxIKVz2/26c9AAAAAAAAAABmUJw9APuOPwIwQz7QUB2/cAOPPcoVvL0AAAAAAAAAAFu8LL8+/Po99S+mvhpbnb+fjky+f3O4PQAAAAAAAAAAJqilPQzBxD8arpg+zbU9OTbsyDzqDFM9AAAAAAAAAACaMMk87Ek0P2D9Tj1kdW6/FYfkPc5Kjz0AAAAAAAAAAJMX4z4UhoI99XWUPXdArr8I6j0/E7CgPgAAAAAAAAAADXcEPmVBsj+13DI/7lo8vrkr/b0fZyi9AAAAAAAAAACNWvU9Ek6rP2wRjT5U1Q6/TLKEvvOo+7wAAAAAAAAAAOZkOz16Vcc/6PZNPsA2CjtIwBI8X6WuPAAAAAAAAAAAMxZKvb+IIj+/E6u9J+eFv5f1UL5uh7a9AAAAAAAAAADNJj68U+COPzXUCb6+2yO/MO+KPlcDuD4AAAAAAAAAAFp3mr24Mbc+loX7vIO0ir8tgeu8upDXPAAAAAAAAAAAhWOnvmcSkT9wXyK/WU9Jv/raV77VwMQ7AAAAAAAAAACgqi2+D12CP0KTib4xIEu/kyk4vjG/ID4AAAAAAAAAALN6GL1aMDg/MCCsPTRkkr84uza/cInMvQAAAAAAAAAAyleEPopqKz+yRg0/0s1yvx2Zpr4eM1W+AAAAAAAAAADQaZK+NclSP5+jw77fu4G/7b5UvV7Zqb0AAAAAAAAAAPBwMj9/8BY/1DgCPy3TdL99rUM+epktvQAAAAAAAAAAk6e/vtOifj/a9HC/+VA3v2cFpz5L2Ru9AAAAAAAAAABm4ng+k2CYP/BGiD59rUG/VIo2Pm5IKD4AAAAAAAAAAJquyT0+mYs9pVbcPSWvmb+03aK9bsVhvgAAAAAAAAAAZuR+PB5WuD+/QaE+fw9iPidwBLzbm6K8AAAAAAAAAACzp4g+KDaYPocUFj89l6C/IZltvvdWPT0AAAAAAAAAALr6Nr7l8Yw/EWyZvj/PJr+a+d29MmoFvgAAAAAAAAAAZj7hO3VNtD8Cn68+F72CvfhG0btOlEK9AAAAAAAAAAAqHyc/IuliPscdOD+6Uqq/XU4tPctFsT4AAIA/AAAAAM1YN7zzF7Q/8mlCvq8XSL31gtI8LUnHPQAAAAAAAAAAmqG9vGGcRz+ipYu9bhBnv4YelDwu+cE9AAAAAAAAAADNIIo7PBq1P4YNbT35CoO8hgB6O82pUT0AAAAAAAAAAGag7zwfF3M+HJ6UvbPCkr86630+1cKvvQAAAAAAAAAAGquWPURMoj/8abQ+VUHpvltQIj1W9cE8AAAAAAAAAAB6kRW+3rZUPxeEnb7SF2K/BSpWvbdfHT0AAAAAAAAAAGZTE70AOYA/dd7MvVaWS7+QYGm8OIVUPQAAAAAAAAAAMwSOvepIsD/aUTC/9f4+vmBkMz1OD6g9AAAAAAAAAABAAhI+p+bEP+4xPz+emt89vTKVvaVi17wAAAAAAAAAACCHyD6QcXQ/nhFPPwfFRL+8yJm9tmfyvQAAAAAAAAAAgEhSPgknpz/zQFY/HoxpvmXVWb6rGVe+AAAAAAAAAAB6BJu+jNy6P5DZK7+/Ssm+mgCRPpnUEz4AAAAAAAAAAGZ6+j1G+Lk/dNUAP7eUhbx+E4G+dYtwvgAAAAAAAAAAAAmJva49FT+mw9C9l2Kgv2Qh/L0S6Tu9AAAAAAAAAADNVda8gkSfP35h6r2bPv6+C82SvR0J6b0AAAAAAAAAAC6s+76KXYo/3tlXv0Q0OL/fX+8+B4pAPgAAAAAAAAAAM7rhPSh2sT92p64+vurAvryqYr6SRBg9AAAAAAAAAACafxK9LjqvP+5dGb8HU8G+bFNBPVz9Cz4AAAAAAAAAAABeSz6deqQ/5s4sP4R35L4zB82+2iR/vgAAAAAAAAAAnfmJvgGqbz9xQB2/t20lv34VWj6JO8a9AAAAAAAAAADtggu+5Fq1P7azpb41lnC+IptvPXBNnD0AAAAAAAAAAGa0jL0HtLI/KrctvgJ3vb7mQXI89s7nPAAAAAAAAAAAZgbRuqTYtz/nxRa9ZeeVPtVwc7pt//q6AAAAAAAAAAAmZzC+ygWGP9YKKL+fDUm/Nb9JvZ7sgr4AAAAAAAAAAM1xHT9sygY/YgRAPwY+m791oa09En9WPQAAAAAAAAAAM6s5O7mIvz/4nOs8b3WLPn9WB7zEQAU8AAAAAAAAAADApIA+iFUDPwZPBD8B+I+/CY36u06Dcj0AAAAAAAAAAE3KXr0mibY/fkHyvb0B8r7AHtk8jfQFuwAAAAAAAAAAM9M8O0Grsz+LQxs9uVtkvo8q5r0w8vK9AAAAAAAAAABNKDg+RAs5P0ie3D7eFYa/v7mCPV5wjDwAAAAAAAAAALJuJ7+1k0E+SrcVv4/agb8ZfrC9YBl7vAAAAAAAAAAAM5AdvVrKtj/ys0i/Cr8IPib3MT2J7yw+AAAAAAAAAADqbnq+h42IPzuePr/loCy/fmPNPlEQIj4AAAAAAAAAABpvnb0fAqE/sckcv/LNIr8xW/s9+308PgAAAAAAAAAABtWCvvwZlD8rUGO+4kYrv8EwN78wb7O+AAAAAAAAAAB7kxy/UDb8PjrrAL8VToq/Zmozvsoonr0AAAAAAAAAAG0hSb4vDIY/PnsZv4t7P78d8/E9KqzcPAAAAAAAAAAAJlMAvgZWaT/+89C+5lxkv1HUiD3G26C8AAAAAAAAAACAxrq91YddPtXHUL2b96m/BD2yvosBqb0AAAAAAAAAAC1YNL6Tgb4/TuwKvzw8SL5gm2w+dwYbPQAAAAAAAAAAzehMPFfFnj8tsfo9r24Vv0Y7KL35Iw++AAAAAAAAAACb5BA//62yPpMRRz+2Iqm/RsiRPfY2+TwAAAAAAAAAAN7clr54H4g/arInv4euGb+i0IK8lOMTvgAAAAAAAAAAQJsEPlLjCD8mYaA+4WiUv5ehMr7vJwY+AAAAAAAAAADgPuw+uLTLPq+hGT8OSqu/GJgVvx0Mcz4AAAAAAAAAAFbvJD+bUVq+9gLSPaI8r78WeQU/Ojw8PQAAAAAAAIA/ZlRJvLM/cT9/I6Q7w85Kv+zlw71g3PO9AAAAAAAAAABm2fE86l6rP1iozT5sVwa/70FLvPCgcj0AAAAAAAAAALMVd72fM3M/Dpwavt2VZ79hezI+pizDPQAAAAAAAAAAhavGvpixDj/2Lk6/QcyUv5w4jz40GYY9AAAAAAAAAACaaiA9UCSrPx2LyT62Gtm+SGNevVpJxb0AAAAAAAAAAICn5L4FQ7g/C7FxvypVgr7PHEQ+fczuvQAAAAAAAAAAnWi2vo2jNT9QdNS+3h+Jv0Gbpb4GDbu+AAAAAAAAAADgBVw+TqXHPpaunD5KY4K/B8RFvM6bgj4AAAAAAAAAAFPERz6CF6U/ynXaPqqNA7+NEuA9hHTDPQAAAAAAAAAAM21IvRBFHj9GuSG9tFOBvzftTr6iihS+AAAAAAAAAAAzmFi93NO7P6cqRb9Epps+yXtYPf2wPD4AAAAAAAAAAJPR+T7frqQ+PZbxPqLikr/sjUk9M/RMPQAAAAAAAAAAABgOPHh3pj/TSsM9lV0Rv6yWnzvbYtE8AAAAAAAAAACmVmG+LYiyPnBzzr4pIpK/9PQyuw1ZyLsAAAAAAAAAAJqpDrvCaCs/Kte7vDsle7+2TWi9aqijPQAAAAAAAAAATbAWva98hj+Nlva9T8xOvzAhjD0yzOe8AAAAAAAAAAAAwCY7DLS1PyxgCD4Tcjc+67iOu9B5b70AAAAAAAAAAHNkOr5imcU/Mlyjvr2O1L0YFHq9vZedvAAAAAAAAAAA3vi8vpb89D45sAq/bf2Pv9Zu1b3STAG+AAAAAAAAAACgFYc+SmiPP0aEAD8fE1G/Joy/vlKLj74AAAAAAAAAADMwIT3eRIg/Up6zPXW5X7+FfKk7IrravQAAAAAAAAAATTLnPZTJ8j5rqV0+48Cev9dSBr6NrWu9AAAAAAAAAACAuM49xC+RPyj/zz6tVzC/k+3HvV5ZkDwAAAAAAAAAALmsHb/9a3g+b28EvyOEpr9qYqm+kukHvgAAAAAAAAAAACxivBufsD9QHXK8FzVYvr2vSryyINC8AAAAAAAAAABz8T6+UfWqP0kIgL59bua+5VGSvCqsML0AAAAAAAAAAIq/iz4imW0+NVlbPiLvmb8TsHI+nCiovQAAAAAAAAAAM06GvBbvpT+oWN69Qk+2vpLFCz0DnsM9AAAAAAAAAAAtJwk+cnBzP0zimj43AlG/qCIdPndKrz4AAAAAAAAAAGbHEL40JpI/tooiv05LL78gjDM9UpXAvQAAAAAAAAAAXvIQP8/bpL1jDDA/ipWsvw1sdTy3nas9AAAAAAAAAAD6eQy+QZpvPxXuCL++/IC/W/aEPlayfT4AAAAAAAAAADOyfT1K1aU/c+gWPgUuo75sfsU9YzziPQAAAAAAAAAAoxrUPk7tMj/JARk/WXSGvx+dl75O73a+AAAAAAAAAABmwi48Ev2cP66kBz3+aQe/D9ZRPVIyDz4AAAAAAAAAAPvlxb4iKlg/zmf0vrQNUr9M88S85DuIPQAAAAAAAAAAZgAUPs7auj8VFQc/1WEmvpq99r1yuj69AAAAAAAAAAAGhjU+Hn6KP2b0Oj7CvSy/4hcOPmC8nbsAAAAAAAAAAGD8dz6dYAs/PRjoPu4bjL9D9Ao9el4CPgAAAAAAAAAAINcnvg6qqT+5Dxm/+dugvgJNpj1y9YM9AAAAAAAAAADq2iC/mywXPwjJTr+EI46/9J6gPprNGT4AAAAAAAAAAABWlz7zqIs/5q0FP7ITWL8NFkq+4BbyPQAAAAAAAAAAszIVPfjqwj/GGhc+tFmUPFfQFj28nQw8AAAAAAAAAAAgkWo+mmmlPzKRTD/fX7K+rB2tvfVZcz0AAAAAAAAAAGYlh73dIZg/MHDdvcWLVb9RcXW9+Pu6vQAAAAAAAAAAzSSkPMD5lz/MNSI+UhNGv/7v6DzYA9c7AAAAAAAAAABzWOG90pcuPzp6J75/PlG/LrvWvcRBEr0AAAAAAAAAADMLpz5dD8U/KlgJPwUS+r6BJ3y+dxwSPgAAAAAAAAAAJtf3vY7z/z4b+2m+0UWHvydmvD11qP69AAAAAAAAAADNm2G9VeGvPwSKSb9pWXW+hLsvPYQCsT0AAAAAAAAAADMKHL7WipE/So27vnkRDL/AGhA+znNtPQAAAAAAAAAAnVxjvpUvwD+urja/TnHnvTFAgj4LoSQ+AAAAAAAAAAAz18s9bzWQP3CnUj48GRC/FKmUvU7pMr0AAAAAAAAAAMgzrL67OtI9dVD7vd1Gn79Vlz2/H/u5vgAAAAAAAAAA49O8PhHkcz9E4Dk/B/xav1L4kb5un947AAAAAAAAAABNZ9M++duYPyRNSD/L1DW/zP/zvrI3zr0AAAAAAAAAAHBSab5n5/4+rDeivgcAk78ZoiC+MBZQvgAAAAAAAAAAYJkkvmD8pT7rV4K+xZWivw+VGT6cKaI+AAAAAAAAAABKbQY/PjmkPyrxFD+nGBm/MWVwPpgr4r0AAAAAAAAAAJq2pj1T6cE/E5i0PnaORL33MHm+YEdNvgAAAAAAAAAAMN3dPqxsxr2GKAI9iYA2PZ9YOj2y8HA9AAAAAAAAAAAGLqY+pLOqPlODGz+hS6q/v69Pvoqqlr0AAAAAAAAAAJo/m75amdA/+v0Kv59Vor3rwUI8FBsYvgAAAAAAAAAAbaOgvmBQaz/blQK/saZ9vxI18Lz3KEQ9AAAAAAAAAACQDis/jBC0PhFbPz/va6W/R/LhvXZBCz4AAAAAAAAAAHqbsr73rpE/hktDvyQL075yPEC7r1KkvQAAAAAAAAAA7bAJPlbZ1z//x7o+dOz3Oy18n70K3L49AAAAAAAAAAATFAo+157HP4Ob4T50dgg9WqKXvZbnwz0AAAAAAAAAAObjUL12+aQ/Of2Sviud3r6GgZY9wrCCPQAAAAAAAAAAACBEOg3SUD+jJ889HSxzv/dkN75aZkG9AAAAAAAAAADmHZA98U36PWI/gj3NGqe/y52cPWcztz0AAAAAAAAAACakUj7302A/9kjEPg1+VL/9/CS+tPMrPgAAAAAAAAAAre0OPhOksD973To/oMeJvgQeDb7qE2q9AAAAAAAAAADNeVQ9l2imP+cFuj6sotu+miK4vNUlkjwAAAAAAAAAAJpQpj5UTaY/Qre6PkvY8r5oPbI+bdqSPgAAAAAAAAAAJqzsPTmvFD99nY4+t/OSvxGHSb6VnuQ8AAAAAAAAAACmyfW9afRxPZo5vbzGhri/Q/a4vvzFv7wAAAAAAAAAADPzKrtB3rM/R0iHvvKzgb7fh0Y7siV1PQAAAAAAAAAApnE1vi2MST8YheG+0eZ0v5gZ1z7KQj4+AAAAAAAAAACm+oW9c5qxP52PIL9HS2e+CeyvPT8zgT4AAAAAAAAAAE13wz1suqs/uzb+PrxMpL6lXCy9RZyZPQAAAAAAAAAAzbN/PZLSsD+ueDg/V2CBvqmVq73y44K+AAAAAAAAAABTMyG++IWWP5jePL9HsyS/NTdrPidzGD4AAAAAAAAAAP386D5MXaK9apKqPh0u7b1ttF4/wj6mvwAAAAAAAIA/INoVPvyYrj8Z5Es/BeSUvvNB6L2yl/O9AAAAAAAAAAD2AFy+RN2RPuA/ZL50kaq/uPOtvBs0Wr4AAAAAAAAAANB49T68x4M+XHYTP5Usm7+2Gti85RmAPQAAAAAAAAAAhp+XPlq2rz8oiic/HsT7vhLOx71kQiM9AAAAAAAAAACaqsa+AqV7Pz5RFL8L6FK/O/eWvSKjY7wAAAAAAAAAAGZWhzxyM8I/Bp4LPqNIoT45ib071L0NvAAAAAAAAAAAPL5WvzJcJT9VqoW/WVSKv93GI71rqoa9AAAAAAAAAAANjRy+WrebP0zcor78HzS/Wu8Fvbp0cD0AAAAAAAAAAPOKpL2ZXWY/47SFviGRar+Wq5U8emH4PAAAAAAAAAAARhyIPvGCWD8P48k+6vpvv0Req726pqg8AAAAAAAAAAAN+cM97qNFP0WCnDzapnq/0IIHPlGhwzwAAAAAAAAAABuJnL4BQkc/LjsGv/fSfL/l6Q2+B/QwvgAAAAAAAAAAZjaTO4dORz+TVwa8luN5vzMvEz6++uM8AAAAAAAAAAC9jOY+zJURP7MAcT8C/52/mUeWv1iiOb4AAAAAAAAAAJqfPLznHLg/WR3Hvp9i0D4VxlY8qrSwPQAAAAAAAAAAgK0uPSxvvT+W1go/ite3PnWik71mymO+AAAAAAAAAABmdzk9Rkq3P0HmQz4GME2+lxXSvAve070AAAAAAAAAAOaGYD3r0LE/OUrEPpp65b0W7QG8EeWuPQAAAAAAAAAAc76TPlO1aD/iXFY/3t85v4dFYr5m3209AAAAAAAAAADmf8C9aMCsPxowjL5/MMO+2IXcPXp1Rj0AAAAAAAAAAI3/Gj7hd14/14gAP3JojL9KU1m+XIAFvgAAAAAAAAAAAL2MPhDktT/Y1QM/FOXAvhtpLj34bz6+AAAAAAAAAADafAU+cxyoP7u0bj7+UPi+9/uWvdu+zT0AAAAAAAAAAB0SKj/3/yo+Y6E+P8Gds7/c4Xs9FlyQPgAAAAAAAAAAph5tPmEw/T46RtY+Ll+Mv2HZMz42Kd09AAAAAAAAAAAmfuU+LrPmvP4uEz+6uaa/0k5YPtU3GD4AAAAAAACAP92qeb6APBU/q3NQvvJ0k79ZgA0+AqXZPQAAAAAAAAAADk6fvgO7Tj8C9Uu/T1iFv2mR3D49ym8+AAAAAAAAAADtCxg+nBuvP3s0Gj/Lw4a+pc2Eu5S3DD4AAAAAAAAAAPV5zL5yTEw/0Gr7vhwuYr9N04W+fp7lvQAAAAAAAAAAJmB5vu7Yqj+2VDi/vE3NvqfuhD7qLiY9AAAAAAAAAACmaj++bS3GP/gA7L5LpDG+z+jePQ2TLL0AAAAAAAAAAHq8Dj8dLwa9mjIrP35Ztb93PGk+i8UgPQAAAAAAAAAA7S1MPmhWnj7IV4I9o/6dvzGrEz4VfpS9AAAAAAAAAADglRe+bp/NPULLP7/PNaq/e1xKP0BfGD4AAAAAAAAAANLc3b4/6R4/NfbnvkwSh7/8Whw9SNhJvAAAAAAAAAAAXXW1PtLZcz8++hc/UndZvwfLZr7IaGK+AAAAAAAAAAAa9XC9ixuoPy1wPr/LmSK/uKGSPaswND4AAAAAAAAAAE1FFr7YnDE/yimPvjKHcL+M15q9pqmRvQAAAAAAAAAADYOXPg+VQj9dcAQ/fSxavzwhBD4tc868AAAAAAAAAAAmdfo9jZqgP8NH5T7+puO+IaHAvVOA2b0AAAAAAAAAAHGrAb/ITZk9A02Bv9Gto7+uh7k+bg1zvgAAAAAAAAAArXM+vut/rD6cZ4w8sTGbv+9gtr6TNxQ+AAAAAAAAAABtpES/c75jvmNY6DnVimq4jSuePQi9tbcAAIA/AACAP0ovIL+3dic+q4jivv6cr78ch02+wFfqPQAAAAAAAAAAJnVtvvNSTz94MVe/rM+cv0XL1j7uV9M+AAAAAAAAAABmzoe7ureRPyqLS71pwka/XRITPEaN5z0AAAAAAAAAAAksCL95Wyg/OdQov2kqkr9krNe74YWKvgAAAAAAAAAAyhGcPniipj3IdwA/+fy2v6pT6L4u8Li9AAAAAAAAAACAGPy9K8BzP6qS1b6KUUi/Ao7dPsL+cT4AAAAAAAAAALXy8L7PITc/SF53vxxZhb+jZgM/A20sPgAAAAAAAAAAzU5/PNbubD/CrWW9d8AsvzRQCT6TetE9AAAAAAAAAADN4Cc8hAIMPz+bLj1pola/jc0dPHKBCT0AAAAAAAAAAPP8i70Kaao/rj0qvfOWBb+80oK+CrM2PQAAAAAAAAAAYFEVvrlWJj+10K29UOKHv3zNRL4P+z+9AAAAAAAAAACKEGu/NKOvPiBmnb/sZZm/5ASGPmJ3fb4AAAAAAAAAADPrQTtn768/QnK+PUHOEL+ajtG6e1ppPAAAAAAAAAAATTc+PhT82D1Ip5A+S/ygvz/evL3tXPG9AAAAAAAAAABmMBw9/0LEP0iw3z1Ph2S+imNNvSa0ab0AAAAAAAAAAM1kJD0FkL8/doewPrQ2fz5CdxK9GpGwvQAAAAAAAAAA+qR9Ph+TWD9AFFg/vcN6v4mQFr/u3AW/AAAAAAAAAACzXAu98Fu7Pw9FFr9pSaY+EhhGPe2mVD4AAAAAAAAAAM0MqrtkiqA/j7ECPr60L793PHK+liEPPQAAAAAAAAAAQ5Z8viyN0z5SPLq+Da+yv5N+ED8qlkw+AAAAAAAAAADzdWe+ZvgLPzBCy748jny/2B/IvdLUxr0AAAAAAAAAADNWibxamKE+/RMRvVGPk7+TDCU8IvFtPQAAAAAAAAAAbdYePpIJoD/2fk0/QKkSv/rEgL48RqK+AAAAAAAAAADAwbO9r5pxPx7gB771YG6/fuUYvoz2tjwAAAAAAAAAAACOJL1eZbE/OYMrv6GwgL5M4cc8nrCGPQAAAAAAAAAADUZRPu6OkT+ELAc/XgYUv/SpMzzo5T89AAAAAAAAAAAmApu9SHbAP0EVwL7hZd07VCWVPTYP4DwAAAAAAAAAAFtHAD+8BD0/VehNP/ZsZr8JQlO+OtLxvQAAAAAAAAAAJmtYPmhCdD/qbgU/shxev5ZtNj05CyM+AAAAAAAAAAATVNo+j9xwP3eLST+hv2i/5e0Mvqmchb0AAAAAAAAAABYDib7hLhE/1jO5vrYZhb+UIAm+3eIPvgAAAAAAAAAAXV6EPmRQpz4eKLw+1oChv10igj6W8D4+AAAAAAAAAABAwY691PuaPjl+Cr72poq/derZPJGBn7wAAAAAAAAAAFM5Bb6Rf6s+YzkEvQm3nr8nZoW+7z03vQAAAAAAAAAADcoqvrYbMD9iFtq+sKqYvz60Fz6uqCY9AAAAAAAAAABmxhY8LQegP30J8zzqiP6+TqysPLAwZD0AAAAAAAAAALBz2D7RDpo/4+BaP5/fH7/1rEq+sERpPQAAAAAAAAAAZpLpvMGesz/quDq/NzD/vep3Jj2i7Wg+AAAAAAAAAAAahRY9RuaUP17hLD6/CQe/AdADviDuD74AAAAAAAAAACC11L4scEk/ttVjv7nJaL8CoIo+GTZEPAAAAAAAAAAAwtCqvgniAz9UlBS/Tp+Vv1lzPD7DAUE9AAAAAAAAAABtZ1I+P5c8P34xtD6dWlq/zyu0PfXtnbsAAAAAAAAAAJMhvz6U/SA/P70lP76CnL+aGS+/fg75vAAAAAAAAAAARrpRvu8erj9Tw9C+uzW1vpzqJ7voPVg9AAAAAAAAAAAA/7s+uBSfPrXPGz/a1ZS/IWo9vSzVgjwAAAAAAAAAAE3Mv700y4w9zZ1PvovHqb+PGZ8+HoCQvQAAAAAAAAAA0qAQv5SeVT9YLze/6QpcvzOYJj4y1kI8AAAAAAAAAAAN3Iq9Va7TPntzIr6H5ZG/dbbvPaKbkTwAAAAAAAAAAMonrz6nrSo+1u+xPtLHnL9jiZG6gFIwOwAAAAAAAAAA0+9wvopozj5S6vG+qTesv8fu+js1u609AAAAAAAAAAAGy0U+gi+lPyN1bT5CZBq/Un4rPW49AD4AAAAAAAAAADsy576vNlI9oU6bvp3Qs78wS6u+jpeLPQAAAAAAAAAAAEDsPRaGgz9GLQs97Vtgv+5V0D5l/5Y+AAAAAAAAAAAAAhy+hN8UPmh1xr6vnZe/bR2EPhOBFj0AAAAAAAAAAIAY1j4Ibrk+zk4yP+eCo7+MTW6+zZXRuwAAAAAAAAAAWkcIvslpDD/yEqW+NQ+pv+3gKz5+N8I9AAAAAAAAAAANyoG9bLC9Pxjwn762KMk9yEHKvQcYPr4AAAAAAAAAADMz6zxU5KY/RT4MPrSX/L52b868CT/LvQAAAAAAAAAAA9+pPtlS2z5+FwM/qtCUv4ojSr3GOFw+AAAAAAAAAACa25o9HvgOP/lBOD6Wboi/ByIBvcHwozwAAAAAAAAAAL45gb7gBI8/HX0Mv9eNH7+NX04+Xtz5PQAAAAAAAAAAumSbPkkYhz8TXiU/84M3v5V3gz0u66s9AAAAAAAAAACaFda910m2P3Zf+b7nize+6csIPc1SPrwAAAAAAAAAABpMST3yYmc/kh6wPQLFM7+/SCE+vOkxPgAAAAAAAAAAZp9JvaKvpT/dWIW+61m6vjEunrzNxG+9AAAAAAAAAABGaCw+Hy8sP5si2T5/25q/WVH8vPsaYDwAAAAAAAAAAJp2Sj324rk/VtqPPsNmCD0+JIq8OJDoPAAAAAAAAAAAmrZ+PunTnT/iZMw+Oi0zvzwvIT1dXvy9AAAAAAAAAACzAKe9f8lhP+NdGr5q0Em/xNMpvm3oTL0AAAAAAAAAANajpr40C6k/LFk8v1WM4r5ZPqK8EkIbvgAAAAAAAAAAs5xovYKQmz8L/a++1Cg4v7XWSbxtt3y9AAAAAAAAAABmgEs+r4FSP/Ma/D5HSmy/T7d/vv4QLL4AAAAAAAAAAE2Lvz20+JU/rMwLP3ZSS7/5XkA8wgihPQAAAAAAAAAAQOsBP+Bpsj5ShIE/hVmsvzYza78mnUg8AAAAAAAAAACNRC2+r2E8P+1Opb68zIK/EN84vvOyG74AAAAAAAAAADNG37zHy7I/qAEvv5wqJr6yku882E7zPQAAAAAAAAAAQpC7vupJgT4Lzl6/vJWuv5eoPj8Vs7Y+AAAAAAAAAAAmKYu9TCSCPiKMqj09nqi/zJCfvljkwr0AAAAAAAAAAAAq5Tz1tMk+YlnzPWI4j78N/K29QoPSvAAAAAAAAAAAzTgFvZDs6z4uz5S990yfv38ruj2GLz4+AAAAAAAAAAD9m5s+NJWnPy08/D6MxjG/2NRqvl6wdj0AAAAAAAAAAE7ikb5Qj10/vaAKv2VDVL+rDR88muNWvgAAAAAAAAAAmunuu85hsT/5y7y+bDQSvy0HCTzJS6k9AAAAAAAAAABGsw++2qakP9pfh76x6wi/SBpIPNTbMT4AAAAAAAAAAK10JL6DWlq8YmtYPhmSpb/39si+QowvPwAAgD8AAAAAcLh4vzTM4b2B0Zy/Kl6zvxgE6D5SYbS9AAAAAAAAAAAaKRg9p2RnP6J9rb0N9Wy/vVMIPr1Rcj0AAAAAAAAAADOAaT6DyWs9QFewPke3lb8To5y8QmT9PQAAAAAAAAAAM/a2PaRbsT/abdM+8GFdvpswGL3Ygh+9AAAAAAAAAABABHk+ARrxPU3rDD7qn5C/z5oiPmd5GDsAAAAAAAAAAKYaqz0zdng/AM0pPv/ZPL9jW2q9QLpMPQAAAAAAAAAA5gvxPvAvrz4Fqi0/acSlv/1GC71oFns+AAAAAAAAAAAT6Vi+9NS/PWHgrb0rNYu/T/MsvfJLcj0AAAAAAAAAAEgy0L5wdaA+ONjSvrmAhL99YZq9nomgPQAAAAAAAAAAg4BVvtSbrz+6hA6/v4q+vmuqUz6ntjQ+AAAAAAAAAAAz5M484Q/7Pvs9Dj7AG6W/mkUavaoLWj4AAAAAAAAAAOZIeT4CJ5o/YlizPp0m+b76AF0+LFyMPgAAAAAAAAAAms6TvZQklD/LLmG+tncjvxW6Fj76IRU+AAAAAAAAAACaT2i8djW2P4ZE+r0/9pa92kXyO3bOEz0AAAAAAAAAAM0sRzuxfrg/mLLePBWxLj0eWrA8La9PPQAAAAAAAAAAcwxHvmZyvz8R37e+9W+KvsYhTb2vsEM9AAAAAAAAAAAAAMS4T0axP58Gwzr58ha/vqT2uusXI70AAAAAAAAAALNYQT0SJD4/nU9RvFF4ar/+HhI+AzOtOwAAAAAAAAAAeiBGP496fD24c/s+cmq5v9/fLD+hCws+AAAAAAAAAADtNkC+qeCGP6D38b69hTO/c17+vHdXLL4AAAAAAAAAADOh7T084T0/HBmlPhXXbL8UjGm+rbf1vQAAAAAAAAAAk2m6Pu/Jhj+U1ic/1JU+v5QbM74WH4M9AAAAAAAAAABagmA+EovYPkdFqz7iUpq/LBdSPo9eOT0AAAAAAAAAALPXvr2UaJE/6hEGPcmqP7+fgV2+gO1QvgAAAAAAAAAATfuHPSQibj5yVyE98zOYv6z9dT5ifKc9AAAAAAAAAACQJaY+EPM/P22PSz+NRk2/iB53vhHihDsAAAAAAAAAAGb7r73wW7A++pAYvqHtpb/AE/89Dy0CvgAAAAAAAAAAMaEcvzXvbj++kKi++VuVv9ZMmL8rg9++AAAAAAAAAADgmQQ+bMr0Pg7ngD6bJoy/3ISlvVufsb0AAAAAAAAAAICsNz1lWr0/0y5fPiRM7b00PJg8iiSPvQAAAAAAAAAATW4CPs9uRT3a0AU+Eg2Ev8c9Q7yAN4k7AAAAAAAAAABaeFk+yeaAP09IGj8SACq/L3D/vQY7cb0AAAAAAAAAAMZilj5CYt0+2s8vP3KSnr+7Hh++cBvSPQAAAAAAAAAAs8myvRbTsj9oxQS+S2wHv8ZEkLxeJCe+AAAAAAAAAABm89S95ralP2W/or5ziOq++nvnO4XO370AAAAAAAAAAA2K1j7EUR4/854ePwy9l79nspG+IAHGPQAAAAAAAAAALRwvvkClsT826lO/Q7R2vrnJLD610FA+AAAAAAAAAAAzx/M8llWrP8g6Oj5COKa+j7ysOrZ1nbwAAAAAAAAAABrMw713Tr0/qmuNvr/ZKL6gVJi8A+nuPQAAAAAAAAAAzQXjPMB7xT+djvk9mc6ZvORwtjxd4jI9AAAAAAAAAADNgHG8/wmwPzaU/r62DgO/WvVbPHFPmD0AAAAAAAAAAM31Ej11FK4/+jClPuqNib7X0aW98s5JvgAAAAAAAAAAYAE3vnmbyD9XsRu/Jl/SPRJLdj18asO6AAAAAAAAAAAKz8++ikAKP9wpHb9deoy/ThFZvQ7Rqr0AAAAAAAAAAABwn735LbI/Qvqrvlm2Rr6joF096M/9PAAAAAAAAAAApqqBPsgvsD8pczI/oavPvs2sib5+LGm+AAAAAAAAAADU0R2/X2NNPoQDB7+G14+/Gl1YvuA38L0AAAAAAAAAABpdZz18nrg/AZePPW6gzr5uRlA++qQ6PgAAAAAAAAAAjWSzvewhuj9FUp++pS8Mvq+lED2rv0I9AAAAAAAAAAAA1CM+1BhZP76ozT6bN4C/EDbXvMchELwAAAAAAAAAAGaeLL21HKc/GdYJvwKBKb/yaWU9wzYjPgAAAAAAAAAA2kxhvuhInz+Fmx++kHchv6TQcb4AVvu9AAAAAAAAAAAzDKK8KD+8vFy7rTskJ6C/Kx6WvT24pD4AAIA/AACAPwAN0r2J06k/YIJNv5cE2L7r8vo9eKp0PgAAAAAAAAAAwx7nPsfnWz/DMSU/40BNvzOe7D0SjWQ9AAAAAAAAAACt6n8+1225P2d6Gz9i3x6+r/BtPLiaQT0AAAAAAAAAADOvMb2fWBg/Jr8GvsPejb8zoXA9Wq27vQAAAAAAAAAAAFS1Prqjgj+7NbY+wyY+vwwH8j2r88I9AAAAAAAAAABmphu8enO2P9VVYb0atQG+wagCvU0G5L0AAAAAAAAAAOpAcr7zuQc/EL9tve/EcL+BvUC+tK1EPgAAAAAAAAAAupNLvqib5z5IbKW+rEegv+WGHj/QO5o+AAAAAAAAAABFuAy/pWxaPtKZ6L7sVKe/P8hNvnL7K74AAAAAAAAAAGb24b7+s6Y/BZIhv+EdEL+JSju+DPmdvgAAAAAAAAAA/owRv686Jb6Wj4e87ps5PAyVWT0iVBK8AACAPwAAAAA7BOO+XOwAPdMTMr9Asre/dfBWPlY2OD4AAAAAAAAAALMxqz0Jd5s/Tj2RPs3ZIr+JY+e9sRaZvQAAAAAAAAAA6semPiir0z4YyJo+vsqfv4GoGD5YPfA9AAAAAAAAAAAzMvM9/cd8P0J64z6gXlq/IdJ/PdrX2DsAAAAAAAAAAABYbL43KXQ/KuoZv7H+N7+JRyi8hV0ovgAAAAAAAAAAZjL7O3npuT+wSUY+91TdPv+rEryesje9AAAAAAAAAADjJxo/954SP0bllj/8UGm/3fYRv1P8o7sAAAAAAAAAAArZiT4Ggrk/e1T8PkA2/b53Sx29qOfMPQAAAAAAAAAAS50pvwbaMD8O5Ea/w2d6vwKXNr0alTG+AAAAAAAAAACaldC7Bs2vPzRSKb4fVdi+G242PDpQID0AAAAAAAAAAAAMkTvsP6Q/sZZBPSGI575GF6+9vPaEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYk0ABEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiTQAEhZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.04857599999999995, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ4bkZOLHUcCUhpRSlIwBbJRLX4wBdJRHQJEuWYplSTB1fZQoaAZoCWgPQwjOT3EceHhZwJSGlFKUaBVLYWgWR0CRLlVvMr3CdX2UKGgGaAloD0MIA5ZcxeLgWsCUhpRSlGgVS2VoFkdAkTAV2mpEQXV9lChoBmgJaA9DCKeSAaCKWVfAlIaUUpRoFUtXaBZHQJEvwbBGhEl1fZQoaAZoCWgPQwiY3ZOHhS5jwJSGlFKUaBVLU2gWR0CRL7mkWRA9dX2UKGgGaAloD0MIwW9DjNdlaMCUhpRSlGgVS25oFkdAkS+oMjNY83V9lChoBmgJaA9DCJd1/1iI3FnAlIaUUpRoFUtiaBZHQJEvoGA08/51fZQoaAZoCWgPQwghdxGmqC9hwJSGlFKUaBVLYmgWR0CRL3T0QK8ddX2UKGgGaAloD0MIxJWzd0awZ8CUhpRSlGgVS1NoFkdAkS9j/6wdKnV9lChoBmgJaA9DCFjlQuVfWlTAlIaUUpRoFUtfaBZHQJEvVPFefI11fZQoaAZoCWgPQwiX/iWpzMphwJSGlFKUaBVLP2gWR0CRMRmTC+DfdX2UKGgGaAloD0MIrg0V4/zgUcCUhpRSlGgVS3hoFkdAkTEISYgJTnV9lChoBmgJaA9DCHtmSYCacVPAlIaUUpRoFUtFaBZHQJEw+puMuOF1fZQoaAZoCWgPQwgju9IyUglZwJSGlFKUaBVLPmgWR0CRMPC3PRiPdX2UKGgGaAloD0MIcM0d/S+VVcCUhpRSlGgVS3loFkdAkTDolUp/gHV9lChoBmgJaA9DCM138BMH4FnAlIaUUpRoFUteaBZHQJEw1dIGyHF1fZQoaAZoCWgPQwi4I5wWfC9xwJSGlFKUaBVLXGgWR0CRMM+PRzBAdX2UKGgGaAloD0MIDOpb5nTZT8CUhpRSlGgVS0poFkdAkTCkl3QlbHV9lChoBmgJaA9DCI2ZRL3gDFPAlIaUUpRoFUtEaBZHQJEwnFkxyn11fZQoaAZoCWgPQwjJIHcRpg5iwJSGlFKUaBVLU2gWR0CRMJclgMMJdX2UKGgGaAloD0MIZacf1EX6TMCUhpRSlGgVS0VoFkdAkTByIcinpHV9lChoBmgJaA9DCFdBDHTtAWDAlIaUUpRoFUtUaBZHQJEwbx9XtBx1fZQoaAZoCWgPQwiWd9UD5ktSwJSGlFKUaBVLTWgWR0CRME5N47iidX2UKGgGaAloD0MI2q1lMhzsXsCUhpRSlGgVS1xoFkdAkTIoJeE7GXV9lChoBmgJaA9DCF392CQ/bF7AlIaUUpRoFUuMaBZHQJEx6mgrYoR1fZQoaAZoCWgPQwiCqPsApGtUwJSGlFKUaBVLZGgWR0CRMeHOKO1fdX2UKGgGaAloD0MI7iO3Jt0AWcCUhpRSlGgVS1BoFkdAkTHdB4Uvf3V9lChoBmgJaA9DCNnqckrAZm/AlIaUUpRoFUt8aBZHQJEx3YukDZF1fZQoaAZoCWgPQwgsZK4MqsRowJSGlFKUaBVLZGgWR0CRMc2CuloEdX2UKGgGaAloD0MI7x6g+3K4UcCUhpRSlGgVS01oFkdAkTHBKDkELnV9lChoBmgJaA9DCHqnAu75wWzAlIaUUpRoFUtmaBZHQJExv7fpD/l1fZQoaAZoCWgPQwgpQX+hRxtXwJSGlFKUaBVLQWgWR0CRMa3WnTAndX2UKGgGaAloD0MIvwzGiEQyV8CUhpRSlGgVS2ZoFkdAkTGd8uzyBnV9lChoBmgJaA9DCO86G/LPsVzAlIaUUpRoFUtlaBZHQJExnQgLZzx1fZQoaAZoCWgPQwhzS6sh8RZrwJSGlFKUaBVLR2gWR0CRMZVrylN2dX2UKGgGaAloD0MIMq8jDtmEU8CUhpRSlGgVS0poFkdAkTMvb48EFHV9lChoBmgJaA9DCPzkKEAU+2DAlIaUUpRoFUtOaBZHQJEzLxWkrPN1fZQoaAZoCWgPQwht4uR+h1hYwJSGlFKUaBVLXWgWR0CRMxcjJMg2dX2UKGgGaAloD0MIHM2RlV/cXcCUhpRSlGgVS1BoFkdAkTMVPacqfHV9lChoBmgJaA9DCA5nfjUHZFzAlIaUUpRoFUtxaBZHQJEzDPE87p51fZQoaAZoCWgPQwguILQevshSwJSGlFKUaBVLUmgWR0CRMvl8gIQfdX2UKGgGaAloD0MIs+4fC9GsWMCUhpRSlGgVS1loFkdAkTLU9hZyMnV9lChoBmgJaA9DCGcrL/mf4VvAlIaUUpRoFUtjaBZHQJEyzhCMPz51fZQoaAZoCWgPQwiciH5t/cJPwJSGlFKUaBVLcWgWR0CRMs7aIvaldX2UKGgGaAloD0MI0HtjCAA7XcCUhpRSlGgVS4VoFkdAkTLMLfDUE3V9lChoBmgJaA9DCKjHtgw4blHAlIaUUpRoFUtVaBZHQJEyqPvKEFp1fZQoaAZoCWgPQwhauoJtxMZWwJSGlFKUaBVLUWgWR0CRMqit7rs0dX2UKGgGaAloD0MIk1URbjI6V8CUhpRSlGgVS2VoFkdAkTRZNbkfcXV9lChoBmgJaA9DCBPzrKQVLVrAlIaUUpRoFUtcaBZHQJE0RQGfPHF1fZQoaAZoCWgPQwhr9GqA0jVTwJSGlFKUaBVLS2gWR0CRNAnDBMzudX2UKGgGaAloD0MIPs3Ji4yscMCUhpRSlGgVS25oFkdAkTPz6BRQ8HV9lChoBmgJaA9DCINStHIvJVfAlIaUUpRoFUtvaBZHQJEz6r4nF5x1fZQoaAZoCWgPQwjsia4LP0tfwJSGlFKUaBVLV2gWR0CRM+O0svqUdX2UKGgGaAloD0MIUUoIVtUWU8CUhpRSlGgVS1doFkdAkTV/Wcz68HV9lChoBmgJaA9DCLzmVZ0VHHPAlIaUUpRoFUtkaBZHQJE1f+kxh2J1fZQoaAZoCWgPQwgUyy2thu5LwJSGlFKUaBVLcmgWR0CRNXMDwH7hdX2UKGgGaAloD0MI4PYEiW10acCUhpRSlGgVS05oFkdAkTVzjaPCEnV9lChoBmgJaA9DCGprRDAO5VjAlIaUUpRoFUtmaBZHQJE1YeHSF491fZQoaAZoCWgPQwieswWE1kxWwJSGlFKUaBVLYWgWR0CRNWBxPwd9dX2UKGgGaAloD0MINLkYA2sqYMCUhpRSlGgVS0VoFkdAkTVaQzUI9nV9lChoBmgJaA9DCOrQ6Xk3f1nAlIaUUpRoFUtRaBZHQJE1V+hGpdd1fZQoaAZoCWgPQwj6CtKMRdMPwJSGlFKUaBVLWWgWR0CRNTGu9vjwdX2UKGgGaAloD0MIDmsqi8Ipb8CUhpRSlGgVS0poFkdAkTUBdUsFuHV9lChoBmgJaA9DCP/r3LSZqm7AlIaUUpRoFUtoaBZHQJE03bpNbkh1fZQoaAZoCWgPQwguBDkoYb5bwJSGlFKUaBVLTmgWR0CRNNeUY8+zdX2UKGgGaAloD0MI9zx/2qjNWcCUhpRSlGgVS1RoFkdAkTS96HCXQnV9lChoBmgJaA9DCJvLDYY6OEPAlIaUUpRoFUt7aBZHQJE0vTNMXad1fZQoaAZoCWgPQwjMDBtl/b5YwJSGlFKUaBVLUWgWR0CRNqW9US7HdX2UKGgGaAloD0MIY+/FF210YsCUhpRSlGgVS0JoFkdAkTaTkhib2HV9lChoBmgJaA9DCCUDQBU3WmzAlIaUUpRoFUtyaBZHQJE2ixA0Kqp1fZQoaAZoCWgPQwiugEI9fZlRwJSGlFKUaBVLSGgWR0CRNoAjIJZ4dX2UKGgGaAloD0MIIenTKvo9YcCUhpRSlGgVS2JoFkdAkTZ01ZTya3V9lChoBmgJaA9DCFOWIY51rlzAlIaUUpRoFUthaBZHQJE2cyxiXpp1fZQoaAZoCWgPQwiAKJgxBYVPwJSGlFKUaBVLWGgWR0CRNjSB9TgmdX2UKGgGaAloD0MIsfuO4bEIZsCUhpRSlGgVS4loFkdAkTYQqAjIJnV9lChoBmgJaA9DCJgVinS/3WTAlIaUUpRoFUttaBZHQJE2C7SRbKR1fZQoaAZoCWgPQwhrniPyXZxPwJSGlFKUaBVLRmgWR0CRNfIz3yqddX2UKGgGaAloD0MIxHdi1osPU8CUhpRSlGgVS3JoFkdAkTfj6eoUBXV9lChoBmgJaA9DCOpCrP4Iu2jAlIaUUpRoFUtQaBZHQJE30y57PY51fZQoaAZoCWgPQwjRzf5Aub9UwJSGlFKUaBVLWGgWR0CRN9K7qY7adX2UKGgGaAloD0MIO+C6YkbKUMCUhpRSlGgVS2doFkdAkTfEz0pVj3V9lChoBmgJaA9DCDJ07KCSUGvAlIaUUpRoFUtmaBZHQJE3nvVmSQp1fZQoaAZoCWgPQwg8a7ddaC9UwJSGlFKUaBVLemgWR0CRN5XqZ+hHdX2UKGgGaAloD0MIUkMbgA3cR8CUhpRSlGgVS0toFkdAkTeQX2ugYnV9lChoBmgJaA9DCFg5tMh2Z1PAlIaUUpRoFUtraBZHQJE3kMjNY8x1fZQoaAZoCWgPQwjo2az6XPNiwJSGlFKUaBVLbmgWR0CRN5ChN/OMdX2UKGgGaAloD0MIOEnzx7SCXMCUhpRSlGgVS1VoFkdAkTd23nZCfHV9lChoBmgJaA9DCEYIjzaOPlfAlIaUUpRoFUtPaBZHQJE3Y8mrsB11fZQoaAZoCWgPQwj4VblQ+VxkwJSGlFKUaBVLYGgWR0CRN13lCCz1dX2UKGgGaAloD0MIl8RZETUfW8CUhpRSlGgVS1loFkdAkTdW74BV/HV9lChoBmgJaA9DCFXejnBa/lHAlIaUUpRoFUtmaBZHQJE3LRiPQv91fZQoaAZoCWgPQwi22sNeKN5KwJSGlFKUaBVLRGgWR0CRNyjpcHGCdX2UKGgGaAloD0MIApzexfs3YMCUhpRSlGgVS1ZoFkdAkTkLBO58SnV9lChoBmgJaA9DCPFHUWfusWbAlIaUUpRoFUtLaBZHQJE4+VII4VB1fZQoaAZoCWgPQwhDVrd6Th1VwJSGlFKUaBVLU2gWR0CROOkv9LpSdX2UKGgGaAloD0MIxeV4BaLJWMCUhpRSlGgVS1NoFkdAkTi4kVvddnV9lChoBmgJaA9DCMtneR7cW0hAlIaUUpRoFU3oA2gWR0CROKt0V8CxdX2UKGgGaAloD0MIrJFdaRnRTcCUhpRSlGgVS2BoFkdAkTihl18stnV9lChoBmgJaA9DCIo9tI+V9mHAlIaUUpRoFUt3aBZHQJE4lUedTYN1fZQoaAZoCWgPQwgJ+aBns8xYwJSGlFKUaBVLV2gWR0CROGNt65XmdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.99, "ent_coef": 0.02, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c6fcb9c0af646e2d52eb962c93edfaf51cd86f5591107bdc3c1f5e71bc26f251
|
3 |
+
size 188335
|
ppo-LunarLander-v2/data
CHANGED
@@ -41,13 +41,13 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,30 +56,30 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAADNzGrpIS5y6oj2dO2anqLWk97s6UrO1ugAAgD8AAIA/AKR1PKjzqT2dEd697UNzvg/4PL0yA3k6AAAAAAAAAABmHiE79nR2utIvjLvXilc2zeOMukNGybUAAIA/AACAP5osGT32AAO6CJNzuzLo6rbTdiK70NOMOgAAgD8AAIA/GnsnPtuXdj/gHSQ+/x6vvnC1FD7iHIK9AAAAAAAAAAAzFV++I0LWPmAXrT6C3HO+bNOEPOYXTD0AAAAAAAAAAM20Fbtcayu6vT9ouayNurTGmQE6NkqFOAAAgD8AAIA/M0J3vaxO4jwFASQ+7jKWvRLxhjtWACU+AAAAAAAAAADN+SU9jwJounJtFbv8YNS1ASgiuw7fLDoAAIA/AACAP01xNb1cD2+67sYrumbB1jOCqxq76h1DOQAAgD8AAIA/zW8vPddDKblKt567qW3SNsmcurtVob06AACAPwAAgD+ae0s9AgweP0vy0r1Gxke+FMyXPIBop7wAAAAAAAAAAGZbQD24ttG5zc7DuhxbgrW7rEk7w3DnOQAAgD8AAIA/s1MhPa5bgrr7ZYi7ZCQ0NnopH7sTQJ06AACAPwAAgD/N/m49MWLHPTUcsz2Am3W+aV+LPQ7xR70AAAAAAAAAAL07gL47A2g/uMyKvbs/mL4fnE2+xhmcPQAAAAAAAAAAYANjPgaZFD9uQ/y94C1rvqKvVj3mlAg8AAAAAAAAAADNzEg5CgciuSsLgrx9fqK7KneiOu8MMj0AAIA/AAAAAM3NzzwUgIe6nVaOOWY1PrOX8WK6CZSiuAAAgD8AAIA/zQCIu8MlebolwjY775iHNZXn+zoGcFC6AACAPwAAgD+aFMW84LFHP9jHa7zNCGC+axIxvSj/gjwAAAAAAAAAAGZwfrxc2xK60uIdPBWr0jTqcz65k6HdMwAAgD8AAIA/MzVuvc2ZPj97geE8HUmSvl+vwr3P0cY9AAAAAAAAAABmAos8XNN0ugY0BryX7m20vtN7Oo1p+DMAAIA/AACAP2bIGz32/Da6A6GwOn4lrjzi1re5vkeWPQAAgD8AAIA/ltZvvo8zjT+v06++sCWpvnmaeL6+/Im9AAAAAAAAAADN8Mo8dBuzP1hvAD4Vzoi+PCkVPWacTT0AAAAAAAAAAJp+bb0UDIO6q7+DPGO7MbaS01g7BQcetQAAgD8AAIA/GoMWvSlQIbpXJKA6ZCSotao/PjrmKbu5AACAPwAAgD9Njae9cV1tue4HSjwKMKs11u8lu33IqDQAAIA/AACAP43Wgb2F65A4K+zNupIhKzYpx9w7m7j1OQAAgD8AAIA/5l12Pfb0Wbro6Vu6M2xVtp3blrprLng5AACAPwAAgD8AYse891sOP5EzybzXq32+qxVdO8U35roAAAAAAAAAAG1hBj661Yg/6ScZPi2O174k9Qg+Biq1PAAAAAAAAAAAzRxSPbimgblz8j28H5FzNru+qbvaPeC1AACAPwAAgD8AI808UpiEuTwzi7rLLd+1qP1nO4dspTkAAIA/AACAP7PfRj1cy2S6QJZEOs7707Xtv8E6PqNjuQAAgD8AAIA/AG3PPEPpsz+pWB8/E9LLvfgyjbxa2dG8AAAAAAAAAAAzIa08KRA9uqXrfTlajf61Hf6Ku8qJ9rQAAIA/AACAP2YkL7y4VsW5LhnoumtfTrVt9tS6fswKOgAAgD8AAIA/ZlgMvMNxYLoCBx074N9cuallwjo6nSy6AACAPwAAgD8AWd28e0SAuhQyCLyjgMI2qWUouzO/LLYAAIA/AACAP2aRojz23Ee6PnqKOx4zaje95b66nt1VNgAAgD8AAIA/TfYjvT3qcrmeaNs6d6voNXHrujvOqAC6AACAPwAAgD+Np4w9jw5Buqb8izuGdNo25MmiOTyGn7oAAIA/AACAP80MBLzDLXq6djwqu4THL7bI5wa7IC1DOgAAgD8AAIA/M881vXtulbpRJQU6hEpUNbiT0Doq9i00AACAPwAAgD8Aoi08XOs+umZXe7szG9g3WNWuOym2LDoAAIA/AACAP2YXyzz27BC6wy3FOiHKybV+JEq7tuzTtAAAgD8AAIA/BrsNvuomNj6Tk7k9T7lNvqPi8rwrOfA7AAAAAAAAAADmb189hQPGuQdeS7vgNHa29Lo5utIFajoAAIA/AACAPzP9QzyEZnw/qqQyPYZ8or4tc4S9CixVPAAAAAAAAAAAmmdLPaQEPzoSjaY68gchNiqyAjoCqMu5AACAPwAAgD8zIlW94T7TupA/krziBx29hscWO6JdCT4AAIA/AAAAAM0VUL32UEa6EEbOO2sC+jfOCg+7I4QrNgAAgD8AAIA/5kVDvr9hUj9aTRw88PhdviSir73SIYU8AAAAAAAAAACalsu8KShGuoSPF7o+cEu1WTGQugIYLjkAAIA/AACAPxpC6736T+Y+2UszPjQ3e743+0G8MAtVPQAAAAAAAAAAANjIPFz3fbqDW1a5kxQZOfanMDtOiTI4AACAPwAAgD+AIxO9sJyqP/bTmr6Sc9e+4IGhu0OVkr0AAAAAAAAAANoRoz1SoMq5jZhzO/LnW7k72Is7WsVAugAAgD8AAIA/8y4jvjNNUD/eyzS+JjOLvj9Qqr2zp6u9AAAAAAAAAACzZho99rxSunJUNzqWYo02+mypur3NVrkAAIA/AACAP57Kyb5wwnw/WBXKOkMssL4I5ba+obE/PgAAAAAAAAAAmgQ8va45krr6wH45M1RIM7E7g7qLppG4AACAPwAAgD8zhFQ9j6o1up4eH7y00pk5/YL8OjCDDLkAAIA/AACAP5rwOD0pIEu6+BJlOofy/bUZ4pS6HvGCuQAAgD8AAIA/E2Q2vtspubw4aVi8+40Fu27vIz6I6dE7AACAPwAAgD+afig9KVh/upIiVDnewHmzb/2ZuoOjcrgAAIA/AACAP+a9Lz3hXIW6+4eqt7zyMzZWglm6Wz2ctQAAgD8AAIA/AFq8PTqjhj++XA4+zYqpvtuA2z2agJ89AAAAAAAAAABaFp49ZKCbPywiqD7WF6m+fYilPcoIyj0AAAAAAAAAAGYc4jx7ZIe6aD/kOr+TOTZ4Mzg7W4oCugAAgD8AAIA/AAh7Pc6oqT1Is3U+jCpIvmQcqz0GIRC9AAAAAAAAAACa5t+87MnOufJI2DmDihw2YeGZOn8OFDUAAIA/AACAPzO7CzzhGI26H8mUui8aUDiQyJK7zhg0OQAAgD8AAIA/GlzPvY+OXboDIYy68JQWtgM0gDq1gaE5AACAPwAAgD8AEAu9dgQovPI48btJ2TU8cKucPSJ+G70AAIA/AACAP5oAozx7jsy6fhuHvPQzIb2piZg5Km8YPQAAgD8AAIA/ZptZPkqs1j4lE5K+UX2fvp/Nu72MtYy7AAAAAAAAAAAAD0A9H32MuQRSLLlVvJu0VkXHO6boSjgAAIA/AACAPwAoAjyPwgW4JE+LPDKpqjzAhJ47fbwbPAAAgD8AAIA/TaNPPeESirqWtAA7Yvv8NQ0bFzvvdxK6AACAPwAAgD/TM04+8weLPx3xVz5Pt7O+yS6gPr9rO7sAAAAAAAAAAHavhj7v/64/6RkgP5qDyb7JLqA+mkxUPgAAAAAAAAAAZuTPPIXL+Dh6TKs64dIuPB+VgTqD0hi9AACAPwAAAABmJjc9jxZyuhUQRDombHA1l00dupt5ZLkAAIA/AACAP80uzzwfPa65ukgPvFKgFTb7aaM6eOWHtQAAgD8AAIA/K1KHvu1Kmz8Am6C+3HvOvruui75FpYa8AAAAAAAAAAAAcJ870pvZu+7KljyjiL88jn8uPTJrn70AAIA/AACAP3Md0D3hILK6g/9ou6FXjTfHSQE6bm8qOgAAgD8AAIA/zcwiOUhXh7qXzsM7o9WSN+41pjpgeMA1AACAPwAAgD+aO0W9KYQRuhum/zpd7kw1GhcRuyDDQDQAAIA/AACAP80M3Trh+t24wQVDupr3GzbLF7g77tRpOQAAgD8AAIA/WhXaPd9ObD6lOSa+ebpCvicNZLx676o8AAAAAAAAAABmOam8j3J2ulLpj7sFESk3JDwFO+KuZjoAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLYEsIhpSMAUOUdJRSlC4="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
-
"gae_lambda": 0.
|
82 |
-
"ent_coef": 0.
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 128,
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 1024,
|
45 |
+
"num_timesteps": 2097152,
|
46 |
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651753349.7764466,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdoAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAgAAAAAAAAJqc7zxFS8g/SDTrPVMIkT4PV0q9x6G2vAAAAAAAAAAAbREGvjLyxD9a5dO+CtjpvTmuiD6WBqg9AAAAAAAAAAAAGcI9Hzh3P5N6njzmIU+/qnZbPiLp9r0AAAAAAAAAAPPaO76HtKA/nv0Gv7Sl6b5SVSc9SEfcvQAAAAAAAAAAuJTyvuGBjj2UIpi+v7ujv0EHub7KmzY+AAAAAAAAAACAjxi9pWK9P04IXr4izZY967LaPH2e2zkAAAAAAAAAANpYqD2vmag/0jwtP3D++77jX/i9MdwAvgAAAAAAAAAA2NPKvhcZib064hM8lTcNvZw5IDy26JI+AACAPwAAgD9zuBy+cI3JP5ho4L6prh++nFw7vgJ+bb0AAAAAAAAAAPNLLL40Hpg/yUkZv0SHCb8RPU4+vo8oPgAAAAAAAAAAjXH5vTJ3mT+kBDi/2nMdv8YdZT7X3ZU+AAAAAAAAAACao968IKCwP35jdb7kuXK+dm/OOcdNPb0AAAAAAAAAAGasjLxKTMI/9VBtvS6LDL7OHoE9SxldvQAAAAAAAAAAQ/JivsOarT70GUm/UHqav2HIYz9eVwu9AAAAAAAAAADNlZa8KKN3P/WKUTxzUWm/TRaCvvUgEL4AAAAAAAAAAL2qVL7UFPg+cEB7vvK6eb+Dboy+jmQIPgAAAAAAAAAAjcYpPru5mD/FaB4/Kmccv2CFUrxoR7Q9AAAAAAAAAACaH869YGHBP2WgC7/8C649EHejPRAtgzwAAAAAAAAAAO1SgD7sYZM+ot6wPmJ8oL9XgXm8+w2uvQAAAAAAAAAAAFANu0smqz+b3iK9lXzRvjk2JT1ZwsQ9AAAAAAAAAADKcX0/GesNPzbdZj/iVYe/DzIPP3Px7j4AAAAAAAAAAEA6Db7pnZE/p8pCvyZoLr+xZ6A9disEvAAAAAAAAAAAs9x/PuMtuT+pGQQ/JDqYvspJtL1gFca9AAAAAAAAAABm/Du80k63PyJ+r718fNG8nA+NPC2iM70AAAAAAAAAABomDT3fjr8/U1Q9Pr6WaT35V4C9LXZSPAAAAAAAAAAAG2mkvuLDtz6OThK/Wuilv1tjhj21oCK+AAAAAAAAAABNrl89V7y9P9rOUT4vylO9EOc4vbNbgL0AAAAAAAAAAE31eb79X9A/qZWYvnSAp76QfZq9CzZ3vQAAAAAAAAAAZslKvXnEtz8oUAq/H+WZPaAzKD0qv1Q9AAAAAAAAAABNaFk+d4QbP7jqGz9wj4u/eWWdvvHeLb4AAAAAAAAAAPMOhb08lUE/ogX0vZboZr9I7Ca+cV2xvQAAAAAAAAAAkyk+P5avED0+NHM+/VarvwMAnT40OJy9AAAAAAAAAABz9YM9tAmfPyZzxD57ueu+vokmPYax+z0AAAAAAAAAADPZEr5ecok/eFHnvialUr+L4Uo9onO5PAAAAAAAAAAAYKYHvizbtz9Fd9S+KuSqvmvbjz0gCuY9AAAAAAAAAABj9ZM+rKEOP0xUzD6Groq/M8BLPi7baz0AAAAAAAAAAJpdoD1+L78/AtbXPi+wLz3sjJa9H9CSvQAAAAAAAAAAmrNsPDJakz9SIII9H1Abv98a0Do53gE9AAAAAAAAAAC2KGK+sH1dP9Pnp75qDHO/gZncvWtuWr0AAAAAAAAAAECr1j0vcZw//SmxPqXb3747A0m+kfA1vgAAAAAAAAAAM2cfPDQCGT/itvI9G5KPvxVUor5FHqm+AAAAAAAAAABmpto7JNKPP+Drpjw9KEW/PEZBPEKahT0AAAAAAAAAAGY84zxR1WY/l5UHPv+aJL8TxSa9NnlNPAAAAAAAAAAA2imIPQ7erD9KuZU+7EaNvg+VkT231y0+AAAAAAAAAADm73A93KDAP3+fCT/eAJE+7IjqvIMWiLwAAAAAAAAAAJpIsrzie6E/TaYuvgWVAb+l65w9XkksPgAAAAAAAAAAihdBP2tSIj9Fpok/Ubpyv5idyb4jbzU+AAAAAAAAAAAmBZA9Fw+GP0qh7T0Xdme/iKiCPQJIYj4AAAAAAAAAAOjK2L6z21E/IhfUvlJvVb83/ZG+5wKcvQAAAAAAAAAAzay2vUyEhz+JN6++JwdLv3P5vT2eScY9AAAAAAAAAABmZrK3LbqyP3bXjbo21ay+KC8COMbVfDkAAAAAAAAAADNEPL3T97Y/BD8GvrRWnL7ynqo92G6tvAAAAAAAAAAAZr6/u3fosz+RvBe/ZT91voNo3juHewk+AAAAAAAAAACtBAY+RvOaP9i1kz6mhBy/R0bEu/7IALsAAAAAAAAAADTIPL/HSQI/2ruMv5ceqb/vPWs/ml4fPgAAAAAAAAAAGiAMPi+4xD87rgM/k3hSvSnoJL5yKaC8AAAAAAAAAAA6vyQ//EZfPjYyUT+Qva6/O+9bvl61Zr0AAAAAAAAAADM/mTt1NIU/gO1/PfKkJ79Jwlq+dKE+vgAAAAAAAAAATVhgPtSYKj8AceU+LZmLv2rSyr5LOuw9AAAAAAAAAADNx9S8T2JNPxpSIL06ZHe/wMdVvUWGzjwAAAAAAAAAADOvNj97CTi+2LhkP8uWwb8B9Ma9JTTbvgAAAAAAAIA/M1MOPriviT9xzso+VPZSv9MmVj1Q+F0+AAAAAAAAAACa/qW9UhKuPnuxKT6kX5i/WFCpvt9XEL0AAAAAAAAAAADkwbuwALI/dbFJvQE9F77RIoc7QmoIvQAAAAAAAAAA/kfVvvmsJT7uBhC/Ajqev0rhJ73EKI69AAAAAAAAAABmctG9vUyoP0n8Gb+yDbG+sTA7PviMWz4AAAAAAAAAAFqA/D1E7aI/aBVwPrfdIr/HBvK8IlfIPQAAAAAAAAAAGBKVvkth5T1daDu+cF2zv8Zigr69QQE9AAAAAAAAAABNFVQ9yaRnP4CzDz4tn2G/saitvaJ/Cb4AAAAAAAAAANoO6r6oK7k+DTDLvg/Ln7+pYEK8Ei0fvgAAAAAAAAAAWuDhvoheiz4cfau+T1OZv/t9mT3BlhC8AAAAAAAAAAAtsv2+rjGGP9llLb/+WCO/6agfPkCyYz0AAAAAAAAAAPO4Ez5GNbw/p64gP8Vgn70AwJ+8PsDKPQAAAAAAAAAAVY2Tvj6tLj8kHC+/gEGav54lYj+FRtE+AAAAAAAAAACaPUK8YJZYP3ZzJL13koS/N+GKvXuJP70AAAAAAAAAAOb2gz2xkMI/LCQpPiFOWL1hdts8qOS1vQAAAAAAAAAAM0z8PCjutT/r0eo9zQ1Dvnp1WjwT/fI8AAAAAAAAAACgKIk+M6q3P6QZHz8fULK+IHcZvolbGb0AAAAAAAAAAE1U6z3mHJE/nNsgPwUITr9fRwW+CrBovgAAAAAAAAAAFuw4Py4xDj/rUAE/9k6Hv5omLD74YBW9AAAAAAAAAAAt+As+MxjHPy00sT7VSoS9rS6FPSrL+j0AAAAAAAAAAM1Y2zzWfUE/becTPVTfeb+bamo+ctuHPQAAAAAAAAAAAIURvfJjsT9GC+C91we9vhmQAz6qNnC9AAAAAAAAAAAABBu+pzQHPyv/mb5rPKS/Mnhcvop1abwAAAAAAAAAALP0FD3xhYk9apGCP13MY75AxyPA6qQGwAAAAAAAAAAAZmgDvgC1OT9LuIi+GcV1v8bRN73g1Nm9AAAAAAAAAABmj7G98B2pP/Ip2L4QKLO+kNI0PiISFj4AAAAAAAAAADM8G74ojXg/OmN4vsDbNb+CLkS8/TqIvgAAAAAAAAAAWutDvlydrz+ItU+/qWqCvunMVT695Xw+AAAAAAAAAACJFDq/O6LYPfqzgr+SbJe/FyWFPoOwxb4AAAAAAACAP7DpmL4m6y8/km8Ev2Ujjr+NZWg+5JUHPgAAAAAAAAAAoDjQvtE0hT+3fia/VCQsvwibzL0bAuO9AAAAAAAAAAASrbK+FmtKPQ9IAr8hcJq/mP4qPwi8fz4AAAAAAACAPxHRLL8QVpU+C6dbvyvjp789Rtg9LqQovgAAAAAAAAAAZpGWPpJQqD9yMEY/j8cBv5D9ub4NFUy9AAAAAAAAAADNX2E+PbLbPhbSoj4V0pi/fQWLPuglCz4AAAAAAAAAAFPPWz4Dv1Q/qYYXPn23Yr+gEvw+49RJPgAAAAAAAAAAIw7VPihXB75SqhA/U0S3v14EZb3Thaa+AACAPwAAgD+G3bA+9AfYPkLy3D4hnp6/+NctvY3dkDsAAAAAAAAAAG2HaD5CPKA/JiDnPuJ5Ib9ccPi9yrlvvQAAAAAAAAAALeyZvpMEET8Vihu/33uVvxP9F74TZEm+AAAAAAAAAAAztSY8ecfIP6ZxG7ydJjU9uhKzvU7xnD0AAAAAAAAAAIB+3z22D5o/+DLVPuK6Br/t5wW+Wpc1vQAAAAAAAAAA6veTvtnrbT+pARu/i/Nhv4PnWD5oKJs8AAAAAAAAAADmSJc+EnuPPzBfPT9TXD6/lgHIPQr/5j0AAAAAAAAAAABC2T3qwqc/atoePls+5r4SEfC7JNCkPQAAAAAAAAAAquuHPhOthD7j5Gk+i9SKv5CvFz4KHhA+AAAAAAAAAABmvYm97SjfPkWS2r1EWoS/cZDNPKfYPj4AAAAAAAAAAMAvsj3994Y/PoCEPktrRb+WzlG9Q+ObvQAAAAAAAAAADhnfvp8mQT9WQlq/toiEvyRmMz8ycYQ+AAAAAAAAAAAgJl0++IsZP1jvyD4T/Zq/reZjPn6/Ez4AAAAAAAAAAC0DfD64eY48Lqp3PsZeur+09VM+GrogPwAAgD8AAIA/k3VTP7zk2T6Ky2Y/6s+Fv6gneDw4ECk+AAAAAAAAAAAqHuk+JbyYPiLGUj+Ecnm/SMoyvveVM74AAAAAAAAAAACK4zwZjVw/GuOLPQS7QL8wDVi9UPSFvQAAAAAAAAAACJa/vtnAMj/Ukzm/Y3uGvw7fZj69/KY9AAAAAAAAAAAzX3I8CXe2P/oPuz4u0/o9jGACvF0KW7wAAAAAAAAAAM2aSjw+0rE/41OmPm6jj754BrG8fUkYvgAAAAAAAAAAM0SxvahRvj91kue+J0WLPcl+8z1UXck9AAAAAAAAAABaB1o/rfpzvrNjZT+gI8K/7mU1vktJgT4AAAAAAAAAAIorxD4q9lA/GtQHPzMBgr/9L869dfOzPAAAAAAAAAAA2G4VP3qJXj9tyT4/rdVsv+V5hr6clKk+AAAAAAAAAAAicLm+pvmVPzNRNr/3SjS/8XrFPkLN3z0AAAAAAAAAANPDbr72wTQ/mTiivle5gL9SZAa+9d9evgAAAAAAAAAAJlXJPnBX9z7UDkI/IgWRv064JT2msMQ9AAAAAAAAAADWTxi/pMeXPyLtg78ZyCu/F8GSPtiFcL0AAAAAAAAAAM0L5Tx93V8/SAalPRtTP7+kY4i9HGvCPQAAAAAAAAAAmsKjPTkSBD9dcSk+ft6Rv7NLbTs6CZ48AAAAAAAAAADIW6S+DDdyP1kbtb7nqHi/7nmzvqfiSr0AAAAAAAAAAION/T7BjQI/m2d3P6CZkr8ZIrO+h1ebPQAAAAAAAAAA7VELvtajjD+C1+i+UiU5v83OG72+J3a+AAAAAAAAAAAgYs8+/dcWP2ACQj+JZ4y/hsBYvqY8pbwAAAAAAAAAAAD4cLsnY7M/opEAvMoUdL58io896yHKOwAAAAAAAAAAAF7nvGltaz8cnQ6+wpI1vxtChT696vI9AAAAAAAAAAAAzVK9/IC0P1a9H79WQ8i9UbyQPFyeLr0AAAAAAAAAAGDFgb6dH2c/B/g3v76MZ79vkNM9ONL7vQAAAAAAAAAA8FpZP9PUlD96RXc/nfw8v6Zqcj69Mck+AAAAAAAAAACz/uk9YXaYP27Quj6g6RG/iWgDvU30Az4AAAAAAAAAAGYeQDzUak4+0ZAlvasNh7/shBi9ZjVrvAAAAAAAAAAABqOrPsw4ej9GcqA+hC81vyEbWz5dAKY9AAAAAAAAAACzc/c+Ti6KPhzMET8BbYi/UWv7PNpEBDwAAAAAAAAAADMzq7nR5LE/gvZCvIYC976mT5C6RVravAAAAAAAAAAAM7tbO0xJtT+F3q0+uc50PuUqfrsziZ29AAAAAAAAAAAgl5k+pG84Pxw2Lz99sZC/ZIM2PlKeYD4AAAAAAAAAABpdhz0v6rE/drWDPoVReL6HghE9gg7oPQAAAAAAAAAAE8MVvm3lLj8jsV6+HRBcv1sbwLyyH9e9AAAAAAAAAABzJIE+YpbDP9qyPz8USRe+kSRAPSjdbz0AAAAAAAAAACawg70Is4Y//XSbvX/oM79ioEm+bQdpPQAAAAAAAAAAo77PPkXAjD8GQSc/Jk4tv5G7tb14UNi8AAAAAAAAAABtSx8+aSryPvZUej702ZC/pJdpvYpPE7wAAAAAAAAAAJoZJTkJ5rE/SkMCPM589r4RLTa5CPLpugAAAAAAAAAAQCsMP9faSDyTpU4/AZbbvyYbXr9pmMA8AAAAAAAAAABmlsU6Zbq5P1s+bTtTNLi9VTqCO0Solz0AAAAAAAAAAN0ZDD98pAK+lxoYP+Nqlb9PBh4+TIc3PQAAAAAAAIA/c7OMvdUDAz7CXFW7tgutv5Cn2r2q+5o9AAAAAAAAAAB67js/7kiAP83FUT+2oT2/7HdNPjBO3DwAAAAAAAAAAHMvR76VYoo/jr3WvgtaH7/X+m0+1jPrPQAAAAAAAAAAreI7vqRlwj//PJK+ub/XvjKtEz14Y1U+AAAAAAAAAAAAFG68GBOyP8oR/L4bBaO+0nB1POPB4j0AAAAAAAAAAGY3u7x1UbI/I8JYvlo9Jr4n+lA8ycuMvQAAAAAAAAAAxpQYPgYIkT+m67o+RRogv1Q8tz1bupU8AAAAAAAAAACmUda9rubEP0n5kb6voA6+BIMGvV/ytjsAAAAAAAAAAIByub5XbuS9OshGvJn3ATzbzPI++OMbvQAAgD8AAIA/U5RLPjawoT/x3BI/8GHuvgS6qrxl1re8AAAAAAAAAABAbIY+Xu64P8vHET8PQbW+9tVYPSJkJj4AAAAAAAAAAGYSJjwqObU/7gYZPh4OSr1J51a8LzRGvQAAAAAAAAAAeiAbPqvQpT+lDNQ+9UTSvnNNsz1LwAc9AAAAAAAAAABmnNu9U/DDP3uCjb6AuBa+wpo9PkJYDroAAAAAAAAAAIALUz0rX1Y/8HP9PeQrZb/JHYm97UwNPgAAAAAAAAAAAoqBvjgM6DyJ2oy+gEOzv/j4j77AY+C+AACAPwAAAADNLjk9w+4AO5kwRD6m166/Xx1wvpkZBL4AAIA/AAAAAFdoA7/elgI/qeQWv8v/pr8CvLw9ss9dvgAAAAAAAAAAzSz1OjaBnj9sAQ09TDT3vk9gD75rtYy9AAAAAAAAAAAGT3M+aVsNPuYTnr6O+7K/w2xDPx7B0LsAAAAAAAAAAMCLjL3Zor0/eqzsvuNFXT1lXPg8guH5PAAAAAAAAAAA5sqSPXpptD+qTiE/pZ2vvag8gL10UDC8AAAAAAAAAAD9avW+A07YPt43Yb8gTo2/saHXPgZEkr0AAAAAAAAAANLpAj98lYk/xStbP2bzT79oFpu+uwJ3vQAAAAAAAAAA5uwuPux7sD9ewUE/HhFjvoP/IL6muCW9AAAAAAAAAAAzB4Y8t0/AP7bXPj1UpdW9ovZMPujTZD4AAAAAAAAAAE3c7z0VDOM+KjmLPmMzir+LtAW+E6INPgAAAAAAAAAAA1OkviOTiT8LoBa/zJcyvzqrBD6KS4e9AAAAAAAAAADNfrS8h+azP1qvEb+Qf6e9baMJPajOVT4AAAAAAAAAAGadzLxm8bU/ugYlv+ol3j0/xgg9n8ArPgAAAAAAAAAA80NYPg04hT9t+1g+5Bs4v0Gahj7zAmM8AAAAAAAAAAAmbvM+98YnP6z6BT91G5C/DX/zvN9Wrz0AAAAAAAAAAA1+qT5BK0s/ev80P7LKWr/uFug7OaG3PQAAAAAAAAAAZjCWPNEvtz9aGQc9qj3Wvr6Gczyq0pE9AAAAAAAAAABmKgE98buqPz6mwT1FWKm+028HPlZixT0AAAAAAAAAALNpUD5J/g0/qKIkPsXUmb9MRVA+Ff+6PQAAAAAAAAAAs3FPveiEsj9j6Ca/hrEBvqTTGT1I06I9AAAAAAAAAAAzlvC8oB+uP5VCjb7+zIK+O2hHPVv8vT0AAAAAAAAAAHMF8D7luAQ+FagoP6S4t7+Zrwq+ka4XPgAAAAAAAAAAIwUwP659oD1fYRs/32WavzlPYr3VzhS9AAAAAAAAAAC6ABQ+19fFPnJSoD7wtbK/mrRNvpd8M70AAAAAAAAAANqKdz4LSrI9lrBcPlarob9P0oc8GMNJPQAAAAAAAAAAxpWQPghjgT/rGMU+3D5ev7vlAj5+PNQ9AAAAAAAAAAAGh0u+s+a0P2OC8r6wiqu+8tYUPt5w4zwAAAAAAAAAAAB0JDzQbrM/tpUCP+n6Sr7UOje8YHzdvQAAAAAAAAAA8welvVR1nT/yZhG/GQ01v3V5aj3XGR+8AAAAAAAAAABmN3c99ZG2PtJbDz5pppS/dUoZvYEuBz0AAAAAAAAAAA04ur2FPLQ/K/xVvh2t6769l+09+Z4ZPgAAAAAAAAAAij12vjYXjD78Tru+A0OTv/PfhjtCn+i8AAAAAAAAAADgXDg+3XR9P7bsyz7wgTe/Hu+KPXKjcz4AAAAAAAAAADYB9b5jEw8/u4UgvwT5mL9HEdm9dg+LvgAAAAAAAAAAmnFoO4yptT/27bc+Gz69PhRzhruupqa9AAAAAAAAAAB98Ni+pnubP2vHXb+dsMq+SLoRPuPq+7sAAAAAAAAAAOYdKr7Dj4E/tcVPvrubG7/DbKO9BNCWvAAAAAAAAAAAZoZEPOme4j642vW9WTqevy6IIz+Vplg+AAAAAAAAAAAghBW+d9xqP4055b5ZYX+/9ou5vTHQtr0AAAAAAAAAAMb+bb4MSIE/6//rvqsX876MuMs9mgjCvQAAAAAAAAAAM18GPIxKvT/8QQS97Mywvr7knj1arxU8AAAAAAAAAADNRAU7m+JZP/05WD2jL3W/D9dTvXVgt7wAAAAAAAAAAIBpOj0dk7A/GocgPoCrjr7EGBG+BsS6vQAAAAAAAAAAxmoOPnhPoD9yxj4/sHQKvwFVBL4Vlq29AAAAAAAAAADNmoI9uvEWP1cjOT7+Voy/UnffvY57RT0AAAAAAAAAAPPKRT5bBzw/OrWoPr7BhL9f6zG+4kPVuwAAAAAAAAAAWnOFPcFWtT/nDCw/9ZAOvV1l5b2qV2C+AAAAAAAAAAAZoxS/IUiVPnVkWL/NEpq/U3xsPg03OL4AAAAAAAAAAKZAp71FOa0/g9lpvgkR6b4M34I+4NmwPQAAAAAAAAAAXTObPveJTT/juV0/xYNTv9XlC78qv7q+AAAAAAAAAABQgrY+C3+5PQv/7j7JPrC/Z9kEPg7RwD4AAIA/AAAAAEqt/T4v7Q8/Q/sqP1xBlb/tS1y+ZUnQvAAAAAAAAAAAmtlrPf91vj+bW3s+PI1TvaqplD071hA+AAAAAAAAAAAAN9e8UZnCPx6dDb5AVjG9UJE6PSZ42TwAAAAAAAAAAPNUgj0zMas/HbRqPvXEpr5MHK69IxIMPgAAAAAAAAAAzdjnPJDuuD/Yon4+XmBdvDoYjbwrpo+9AAAAAAAAAABm2kS9Yl+5PyBGdr1fiba+mh3jvT72Jb0AAAAAAAAAAFAzxb4oDaY/7ykpv413GL8Ueu89ea+sPQAAAAAAAAAADfuJPUu6YT9DS4o+/FGAv5ixPr4SCMy9AAAAAAAAAACazru8/2OvPwckCL4uuKa+HVWxvOMdZzsAAAAAAAAAAJrDbrwMybc/raL6vhdjrz4bWJk88t/oPQAAAAAAAAAA817QPagsnj9IL7s8Y8YsvyynJD/+q7I+AAAAAAAAAACaB5m88DS1P6IYx74ZYjU9suTMPA3p+T0AAAAAAAAAABYZXb7xYxM+1RK9vsERxr8b1nq+tpySPQAAAAAAAAAAzRKVPBFHyT9LQWs9b5FqPp2Vj7xSAla9AAAAAAAAAABwH4e+86SBP7mpDr/1KTW/dj00PgvJqrsAAAAAAAAAAI35Nb7ti1M+huW5vWGol7/kswa+bYJ/vQAAAAAAAAAA2u5kPluFgT9g0ec+niAkv5TvWLwzb4a8AAAAAAAAAAAAee49lqFpP7bBHD6hKz+/QK/MPfvnYT4AAAAAAAAAAE0RPr1jyLE/mk1Gvxovar5WMkw9r5gLPgAAAAAAAAAAmrxnPahXqj+AIjI/28sFvxigdL1V/rC9AAAAAAAAAADGO06+iH+qP/M0eb68iRK/wk1+vvZ1bT0AAAAAAAAAAABvzT1Y3K4+9b5vPpJDj7+ZnFi+FGQAvgAAAAAAAAAAzXIjvav9rz9u04m+shhOviBKabwGKia9AAAAAAAAAACGxsy+G3mPPkzzCr/TtJa/RxWGPUbzLr0AAAAAAAAAANq+sD1dd4k/lvMnPtdoEr+Ht/A9kXiXPQAAAAAAAAAAZtYhO+xTrD+pV6A8rpLwvj23GDzzf3I9AAAAAAAAAAAma+G9j1IXOWArXzu1bPi40V7iOk2VJboAAIA/AACAP5qTGb568pc/OzgAvzlvHr+Zkvy9SnBmOgAAAAAAAAAAgCZTvQrvsT9R/jC+pE+jvptRzj0W4+89AAAAAAAAAACG6BS++ZGWP6CrPL+5wDi/KuYYPXN8cLoAAAAAAAAAAF3AzD7sVYw8LSljPlLTjb4/YQNAW9+jPwAAAAAAAAAAZhfUvFJUiz+jaMS9Wz9Qv2OJyjzaA3Q9AAAAAAAAAABmVvE99zrCP3jA7T4vPa685P+0vCadzrsAAAAAAAAAACXs8r5NWhw/AP1Uv58Oer+uxYE+lSFVvgAAAAAAAAAAKycqv7uM5byPRi6/rEO0v7Zenr5Yduu9AAAAAAAAAAAIlsm+O9kaP3IRVb80IZS/HiFpPtC5mD0AAAAAAAAAAGYw9byJ3bU/ZgADvqa3NL63Hc096sIlPgAAAAAAAAAAQNIaP88PHrzOOnU//l6gv2/LDL6Vkq09AAAAAAAAAACaaqo8V7ytP/YBBz9tqSK/UfisvAUS570AAAAAAAAAAFoP9j3eD4E/A5nYPoPCd78W5NA8YtZ1PQAAAAAAAAAAfSabvhgkwT8OIWO/f2iZvTbaaD6zZ5o9AAAAAAAAAACmDWA+rbVIP+HvlT4mAYu/PmYROo7fkT0AAAAAAAAAAPqhnD6n4V8/mj+FPkwLcL/Q9hc9NLSTPQAAAAAAAAAAWo9mPvxzQj+HrYM+ch5av53/Aj4e9yA+AAAAAAAAAAAw1cI+vCMXPsAE9j6iv6O/cLO5vJUyLD8AAIA/AAAAAABTxrwen7M/awEbv/rc4b1VD788/NO+PQAAAAAAAAAAO024vtTLlT7dRAK/pmCGv7ctrL3IAE+9AAAAAAAAAACaWfQ6KqWvPzvqUj3rgRm/emU4O/JRbD0AAAAAAAAAAGZfRz8P+4A/ycGpP2daar+XVmG/c+dsvgAAAAAAAAAAxlI8vn2sSD/EMZO+tSOCv5Pn2r0xmCA9AAAAAAAAAAA99ca+rT4gP2ru171JjoO/FN/8vrfeBr4AAAAAAAAAAEDShj169ao/7rKrPlD+m76ZQqC9D5ivvQAAAAAAAAAAmKHvvryTij9CE2a//TAiv07PSD2lvii7AAAAAAAAAABNsWe9LJefP3tKpL79lRG/iJwYPnf9Nj4AAAAAAAAAADN7TjuMR7Y/6u0jPdvsgzxXwZA70Te0PAAAAAAAAAAADVEOvhB9wj8UhD+/UBInPglMVz3Vt2U9AAAAAAAAAAADAh8//dKFPlkLOD8066C/adhfvYvMYz4AAAAAAAAAALKfw77fvSU/0Bxmv6I8hr8pOEo/aGf5PQAAAAAAAAAAoFgDvrAFjT/GVS++3HAmv3rZg7424rC8AAAAAAAAAACapyM+sfcTPv5cYz6XlZa/9oR8PVJK0z0AAAAAAAAAALXfub7ySKE+Vk0tv5FTpr+EWoA+fhSEPQAAAAAAAAAAQP6CvXpzqT8rmo2+yVPBvk5FFj7LzjM+AAAAAAAAAAAzHRA8JSqXP+xxr70H2wq/4VkmvavS0r0AAAAAAAAAAKblaz7YP0Y/qsXDPrysh79WAFq+6gj/PQAAAAAAAAAAQ/CRvnuyFz/91dC+s+uLv+7hRz73D4E9AAAAAAAAAABAEKs9WOaOP6G5kz6Pp0q/H7G+vfVi+zsAAAAAAAAAABO6n778vsg+urmVvqBbhr/az3++GIxkPQAAAAAAAAAAJv6dPRRMQz9ynzY++wBkv/FHBD5wCei8AAAAAAAAAADanKY+nv6sP+3VET+fSvu+i+0ZPgIkRz4AAAAAAAAAAHMykT0M3dk/sEZTPi8Sgb3wzbu+Yby1vQAAAAAAAAAAmh76vaiTWz96Tju+DvVWv5JsOD294Ug9AAAAAAAAAADNUhi9LkOzP5LHt75M3yG+w/0ePXVg8zwAAAAAAAAAABNcYj5wPJI/V2coPxIbE7+lBGW+aAQTvQAAAAAAAAAAc0eDPb9G1T6EzEe9L/uTv1fryz7oOQ48AAAAAAAAAAAm1qY909CfP93pHz/Mzja/32Z/veacir0AAAAAAAAAAIp2sz53Wu4+QCI0Py+djr8qPqW99vnEPAAAAAAAAAAAs5/vPdB8pD9GbrM+7mC1voqPOz3Q40m9AAAAAAAAAAA2T+S+LZgDP8phVr9EhJS/FuQwPiBrsT0AAAAAAAAAAM35L75T64w/qAEEv2zjL7+EDJo9fk25uwAAAAAAAAAAszO1PdLiiz8WWRc+5VHyvodT2bwsTK69AAAAAAAAAABtlt6+vbIAP0UdOr+x2I2/87whPg3DBr4AAAAAAAAAAJo5lbsunXI/u1AVvRUja7+5s9s94oDtuwAAAAAAAAAAM0wTPX9qkz/31xc+aRghv0unDLwNidW8AAAAAAAAAABmBmC8fIeyP/aYqb78lmC+tI8WPGUDzrsAAAAAAAAAAGbpnb1toao/UuGGvY/Mgr5aQqG+OQK3vgAAAAAAAAAAU1S6PqOATz1OFBM/NdirvwFy2L1imBE9AAAAAAAAAADNw/w8Vre8P55wnz1fvO69UHsfPtNjYT4AAAAAAAAAAF6rxL5c8bw+XgUDv349i7/xGDy+BNyLvgAAAAAAAAAAdnKxvn4fXj+9cvC+MQ6IvwgFfL51xOy8AAAAAAAAAAAzo8K8rP+0PxIT+b5uaZo8ezvHPJLPuj0AAAAAAAAAADPrLDw39r4/O3HVPQ/0dT6HjJi8fmvGvAAAAAAAAAAALaJbPrebrT83CkE/OZecvmKDFL7Ns1e9AAAAAAAAAACmw7U947jPPoIsAz4tx6e/GMvwPUK7mLwAAAAAAAAAAGBS7r5yZ08+gHAYv/zAiL9GRSE8sJuJvQAAAAAAAAAAZpvuPPF3oD/LH9E9ruLovoSLNL7dAlw9AAAAAAAAAADIUYC+rKsPP++PoL4m/m2/C8aOvrI96b0AAAAAAAAAACYb9L0Qhr4/Np8Vv0JfhTuqNwo9DmskvQAAAAAAAAAAphcoPlbksT/atkQ/i/BWvovJKL6ljoq9AAAAAAAAAABmQns8Lb+0Px0Jwz6TYvC70ZOevH7z1L0AAAAAAAAAAMUOBb/EM2Y/QHfrvrEbf79VLyi/C7fovgAAAAAAAAAAzRHIPcgTpj+aLcg+qjnOvo966DyavWc9AAAAAAAAAABmbPg9AxZzP28imT5Gwzi/9gNyPYnPFD4AAAAAAAAAAAAasjzcdrY/4Tg6P9xqQj4bRL+81iEJvgAAAAAAAAAAMwjdPEd7pT+tiaE+Lcgtv7jIhb2VVjm+AAAAAAAAAADN4gQ8Uk3FP0J9SD0TUfQ8cc1CPRRhsj0AAAAAAAAAAEbYJ76rkp8/+1SNvg4wC780CTk9uG9XuwAAAAAAAAAAM3C2PGcwdT79poe8fky1v+LGVT4LJwQ+AAAAAAAAAADNHwu+4L2fPyD6/L4XLdS+HTxQPfJGI7wAAAAAAAAAAHJq8770yF4/xgNYv0Z8SL+kf3A+249mvgAAAAAAAAAAzdQJvrMNjD9Kmyq/hQdHv5Sfsz2oAPI9AAAAAAAAAABtG0m+/Yh/Pw3GL7+LL3K/Jn6cPjtPnj0AAAAAAAAAALpwJT/hjWg+btiXP8tSxr9R+aS/SodzvgAAgD8AAAAAmuMEvPyokD8IcD2+gRsKv4kykT7LTRI9AAAAAAAAAACzwVy9s9uGP8JsA77wFly/auImPaKDBj4AAAAAAAAAAJPdHD5JXCc/irn/O2MWkb9gwwK6xTvivAAAAAAAAAAAndUUv0mquD/oV4i/JbnBvr9Lzj5sbza9AAAAAAAAAADmx2K+/P/MPw/pJb9/sBO9MGRevbu0/r0AAAAAAAAAAAaZTD7B0Kg+pROcPozJrb9qrr+9vXu4PQAAAAAAAAAAGnQXP5uDiz3+IG8//R2sv1Ugob6osN89AAAAAAAAAABzHrC+om/KPn4DLL+sxp6/htnTPU4ZCj0AAAAAAAAAAJo7VTwMi6M+mkOuPYx5pb/dBCi+SswIvQAAAAAAAAAAmgncvXdXdT9tEb2+uXxGv48hNj4sVwU+AAAAAAAAAACwy/4+eL2oPH06ND8Otqm/XgimvTJZxr4AAAAAAACAP+2ToT4b2CI/bv8MP50Vab/b6t89LGwWPAAAAAAAAAAADTbmPf3Duj+jNxI/mXPOvdyIWL50ZjC+AAAAAAAAAACAvNY+c4hBPwYVNz/mqIu/Lt4Dv0pPCj4AAAAAAAAAACof3b4EuAk/XsAav+0SUr/W2dw86ncAvQAAAAAAAAAAre3xPv8cVD+FIC4/uaFxv5UDgr0TXwC+AAAAAAAAAABlIhk/0gz8uyRRITtr0QI5XrHQvEKkKzoAAIA/AACAP5uqwL5vDhI/w0YRv2FVlL9DHKe+rlGEvgAAAAAAAAAATYd8vshTZj9msDm/UP1Fvygpjz2o5zc9AAAAAAAAAAANpry9nBmiP25h3b6K+gC/6JnfPTUkBT0AAAAAAAAAABpaFb5LTp4/+rMrvz7m8b4g8CI9GpkgvQAAAAAAAAAAGiYSvUfksT9+WF++7UsuvoBI2ztQ/do9AAAAAAAAAAAzphc+plOdP2aflj7duxa/6MoZPh1+1rsAAAAAAAAAAECWir1NMbA/wPgNvx3Lc77hDqI9rjgUPgAAAAAAAAAAM0d+ve/Toz9knjS/VgBBv4oanD32SEo+AAAAAAAAAADan649esCRPxPqhz6FQCq/U9rsvRIGNT0AAAAAAAAAAGZ73zx6yq0//nDpPpls276Qbq28UBm7vAAAAAAAAAAA41iVvph7vD/+Rgq/ugKvvsYACb7l/ka+AAAAAAAAAADNgKE8H07KP1zwGT06mLi90JZ1vQ6Cg7wAAAAAAAAAAAD5lz3Mgb8/eqI2Pkx+Rr5Hh9+5u/PauwAAAAAAAAAANrT7vkMwDD8uYxC/nfOQv6u1J75pEx0+AAAAAAAAAAATBOS+LIuoPunUDL9cpo+/zCPHvkOR1bwAAAAAAAAAAJrylTxuqZc/vujVPcoRPb8qCWc9ZL+ePQAAAAAAAAAAcvgBvw+Hej08XgU+CubwveodBj/EyyG/AAAAAAAAgD+jGco+icZqP7LKLj8xwoC/pU4Nvx52Kb4AAAAAAAAAAO3M6z6DzKY+1n94P6ndtL+KJBm/SowdvgAAAAAAAAAAzQrOvcYQnT/ORpS9bd0Av2vRUb5SD7m8AAAAAAAAAAAwJOC+bFQnPmXAKL99tau/b5hcvnbSJb4AAAAAAAAAAO1rMr40XoI+q4CUvtDrpr9KweE9MpmSvgAAAAAAAAAAsORNvvSDsj9iICG/DEAavuNaHD45Lxw9AAAAAAAAAAAgFJM+VD75PvN+GT81+Zm/Eu/FvWw9CDsAAAAAAAAAADrTG76vtP4+9ddevh//ib9KXI29JkKlPQAAAAAAAAAAmpgOPWM6tD85uhA/UxShvduXE71ef2K9AAAAAAAAAADtmwc+ouLPPm66qz35hK+/0GLyPlNNWT0AAAAAAAAAAFoJtb4HaxI/yQE3v2K3gr/8D38+KFI/uAAAAAAAAAAA8yz2Poiipj6cUxw/51+2v5fcAr5c87w+AAAAAAAAAADNhmu8PvG0P2y5OL9tKkA9fFpxPLUhAj4AAAAAAAAAAG6Avb7NYJc+v97Evo8ekb9F0l6+uuUYvQAAAAAAAAAADT2sPvLKlj9+ekY/x8k4v5T06r7yS0m+AAAAAAAAAAAAgOY6g2q4P179hD3LodQ+ogJkuyFbM70AAAAAAAAAAPgxtb7UJ7s/wRscv1WIwb65pRw+nprmvQAAAAAAAAAAIAikPi0CYT/NUnI/lb54v2tO1b5cE6a+AAAAAAAAAAC6J4k+IKvAPsB9ND68rIi//YcEPvOYJbsAAAAAAAAAAAuNqb5QGe8++ngmvwhTiL9qTrY91q5CPQAAAAAAAAAAAFzNuyeAsD+l4JC9wYWCvjGLHDzkmR87AAAAAAAAAABmuNC9lhysP3FiMb/zcqO+RjMDPvf7Lz4AAAAAAAAAAJbUxb5bAV8/eqlnvwMeX78OfQs/78Q0PgAAAAAAAAAAiT1yv9fATTwm1ui/V22HvyvK6z//yLNAAAAAAAAAgD9a1Go+W5W0PrkmxD5h8Zq/vdcGPVKwhD0AAAAAAAAAAEZWAD8y4dc+4o89vhMvrL/+65c/4RO7vAAAAAAAAAAAGq1RPWRsoz8yZ4+8s+wSvyVv0z6VJZc+AAAAAAAAAADN4YY8ncm4PxEeDj/Nyeo+dPOZvDO6/r0AAAAAAAAAAG1/Ab6GiMc/WndWvwfDzj73YyI+koNfPgAAAAAAAAAAPo0Wv0erfT5EtTa+Lviyv6/xKL+OwKw8AAAAAAAAAACzJKS9A8a6PrFFJb64EYS/yUnvPY1aUrsAAAAAAAAAAD5Vmr4xvww/LRedvhmrWr+5N0W+1EFDvQAAAAAAAAAATYYCPWJIVD/4Vl49khJev6D49L0EIYo9AAAAAAAAAABaNYq9EbuYP26nwL2rkR+//J6FvS5QtL0AAAAAAAAAACY8TT5ezq4/ir4zPh3JE7/8wAw+PojUPQAAAAAAAAAAxE4ov+IYJT+kF4W/a+havyamlz662si8AAAAAAAAAAB4duS+AkdAP9V0w74VfoG/i2bavoWBvL0AAAAAAAAAAOajTj31B8E/FknCPmKmhD51sK28FJiYvQAAAAAAAAAAQF+iPr2yhT8ByUU/YeUQvz7hU75KyTS8AAAAAAAAAAAjiJI+5deJP4qZSj8aYCu/l0qovj11C74AAAAAAAAAAJrzcLxSnqg/Zk5qvnl0K79rhts8w+4SPgAAAAAAAAAAOoA4Pn8sHD/g9Ak+emZnv67OUT32SUw8AAAAAAAAAADY6+e+qthaPz3fhL/twIu/jJShPw7Brj4AAAAAAAAAAHY4zb5vYMW94uCFu1NAPTwsY088TB0AvQAAgD8AAIA/tki6Pi+Kbz++uRM/gx9Hv8mGnL2J9Ic9AAAAAAAAAADNImk96AmxPwM7dD4ZYXq+yqcSPY6LCT4AAAAAAAAAAM3GlL2ANok/ludfvvWDOr+7wGu+cPBrvgAAAAAAAAAAWkvfPh2xbT9Ojcc+R1Nqv6YWGD7rrjI+AAAAAAAAAAAaQ8w9MedxP0qJMD7lQmq/NFdZvtXZDTsAAAAAAAAAALOI+L2IBZo/OinNvjTyAr9EoXI898+nvQAAAAAAAAAAM0eiO0I6tT9azAk9vz6wvUCSc72u2LG9AAAAAAAAAAANl9m9qAKnP+cvk72vm0W/lfHMvk2uib4AAAAAAAAAABMJ1D6yOY0/SSU0P/7OLL/33RE+ggMnPgAAAAAAAAAAJjrovfxKhD+b4eu+I4Vnv6cIbTy32Rg8AAAAAAAAAAAzD6g7xUo1P35fpTwxkku/4NMnPQYCST0AAAAAAAAAAIAZAL3kCtA+PbR9vgD5mb+KzZA+ikA/PQAAAAAAAAAADQ6HPULlyT8Fij4+A0ObvQd+eT1Okyw9AAAAAAAAAAAm0sY+x/gsP8I1Dj9JOY2/EymJvo2fcD4AAAAAAAAAAJo4Ej6lDR0/7UBzPlIIkb+Gib09Ul8uPgAAAAAAAAAAoFpAPqFwvj2RC7k+/qa9vxGT3z3dLJo9AAAAAAAAAABmru68dt+sP9128r7+J9q+Smf7PAhmCj4AAAAAAAAAAM3qVj3yAbE/EsUmP3ruZr4/TCy9xiQ6vQAAAAAAAAAAAK6fvVs1PT+D3Nu9Dk5qv55ihzw0+pE9AAAAAAAAAADNyxQ+sB6tP1AKVD+iBI++7P0Ovoiigr0AAAAAAAAAAIM/jT6tgsI//W01P2QLeL6M/Ay+9yMmPQAAAAAAAAAAzbj9u383tj+EgMi+jFOJPnaFETxRzbM9AAAAAAAAAAAgOyE/sYFoPt7wlT//272/aR6rv9pC/b4AAIA/AAAAAB3e4L5RnhI+DTprvl1Fh7+Y4k+9eOMlPgAAAAAAAAAAANhku++3VD9AXvI91/dAv3mHh76TfJq8AAAAAAAAAACjAYk+ZyztPhKABz9zLZa/7z7cvbUOPj4AAAAAAAAAAKpkxj6srbo+toxJPwO4mL8boxi/AyCzvgAAAAAAAAAA7a8KPlb+wj+aqE8/MG/aPczEKr7DqQm+AAAAAAAAAADNLoe9qSC2Px7JO7/Za0c9bBqzPaIBRD4AAAAAAAAAAGL0rr5ZcbQ/5I8Qv0k26b4t3KW8WqgBvQAAAAAAAAAAgwItv/+wlD6EKpy/MEy7v6CQwj8kfAM/AAAAAAAAgD9mljM73qu1P2Yajj7j2r4+4aZPuwnBgL0AAAAAAAAAACDMEL407I8/T9WKvhBXMr+tOL67Tu3BvAAAAAAAAAAAvsX3vr4e7T5r12a/1VKmvzY4HD+bxms9AAAAAAAAAAANpTG+BNqOP87RSL90ulK/jL9SPsiZIz4AAAAAAAAAAPPToz40v4k+GNfRPpOwlr8OcYu9IMrJPQAAAAAAAAAApoE1vmS4rz8Vzd6+wg2VvppgL73oYa69AAAAAAAAAADTTGk+5kGgP6K7Ij+UbyK/VPWZvn4oxr4AAAAAAAAAAA0WlL3GKLk/4jyhvmaWh7wOzkQ9tZEnOwAAAAAAAAAAZlGTPLbHrD9+7IQ+pbjIvrjDNzyi/W09AAAAAAAAAADN5ge9WjItPxhjXj4mema/t0JTvoOr2D0AAAAAAAAAAKphfb7k0P0+qC3Kvtc2bL/Bsy29H2IsvgAAAAAAAAAAmiu+PCCaoT/go0Q+kETuvmn86TuQ1IK8AAAAAAAAAACNNOo9jqyYP/IzLD8UzEO/R3eOvS14er0AAAAAAAAAAHYBtz5RGp4/IG1GPxD0KL/C0WO+pqO1vAAAAAAAAAAA2p5pPtN4ij8LztE9yr8sv9dn9D4aojo+AAAAAAAAAABzdNC9bDy2POrezT5mCHS/a1svv+ojdb4AAIA/AAAAAAAlmb3FLzI/KK/XvQLLYr9l/ko8EHgePQAAAAAAAAAA7lclvzQNij1u/ZK9sc5xvNU2pz+O45s/AAAAAAAAAABtv6s+0oajP3+BLj82cDq/FJ43v+wDC70AAAAAAAAAAIB/Rb2p7t4++tL3vXHlnL8x9GQ85qNavQAAAAAAAAAABupKvmG3dD82Mem+BNNCvwFair6WSWW+AAAAAAAAAAC60B4+W258P5PZPj/PVIC/hpFgvgoLt74AAAAAAAAAAAaFVD9Fhcc+/EWCP6z9r78UaoS+QOklPgAAAAAAAAAA7U1OvvGVsz8b99m+rbzuvnQgkr6aRkK+AAAAAAAAAAA00ga/DoH/vCTyt76nFJ+/8K8Nvz2eW74AAAAAAAAAAJrJ5zo33LE/aczBPRnD+b7fuXG7iBhevQAAAAAAAAAAA9yuvnK+gT/yWQO/iidwv1BtUr1aIYU8AAAAAAAAAABmRu28V6tGP5Mu3D3kIoG/aFINvnxckj4AAAAAAAAAAJpJW7vcZ7U/MissvqqXHz64BYM7UQgnPQAAAAAAAAAAIMnxPpXyjj71HRQ/LEmZv9vY67379Eq9AAAAAAAAAACtG8U+GuXBP7YeQT8t7cS+6jGZvlKd8z0AAAAAAAAAAI0Ghz5Ltsk9h++yPn5CpL85/Wc9Q7gMPgAAgD8AAAAA80Vhvp0pFT6qrQO/ZEqrv2udFz8An9M+AAAAAAAAAADNXHg91J2kPw7ugD7k47W+oAa/vXHYDbwAAAAAAAAAAM3zzLxxIbQ/6xq4vjEqmb3eJbE8NhSEPQAAAAAAAAAAzTIFvFjrsT/tRs++l4L0vpgG7zszLk89AAAAAAAAAAAz6207zJWoPxpIgT1K4Ce/DYbTuBs1XrwAAAAAAAAAAEAbqT4bKYc/rH4/P2GNMb87ov88qK53vQAAAAAAAAAAs6vJvVqltD+d8Ru+P13xvoCj6rysKAq9AAAAAAAAAAAeyhC/UvRjPi34z75hfLC/DGExvucUw70AAAAAAAAAAGabHj2sXp4/HnZ8PlWVFL9vzqK8HvjavAAAAAAAAAAAhjONPhFpOj+j/QI/4lJnv7DpUb78Ah09AAAAAAAAAADA91w+wFWiP4qjCT8gluC+oWltvZ5O4T0AAAAAAAAAANp2Ir5PJpc/yktJvo0VOb8leTi+/jwYvAAAAAAAAAAA5vcrPhKgiz8wfGg+PQ82vwtj4btOToW+AAAAAAAAAABgarW+TsZoP2adTb9nRGW/rryhPpzzD74AAAAAAAAAAA0qgL1M36g//Xgxv4ch/b6pzLY9EG4XPgAAAAAAAAAAMsmpvpzopj4zPKu+o5Wev+XiOL7Iq+29AAAAAAAAAADNJTw9QRKiP2dAqz6WjRa/pnKHvAbo7TwAAAAAAAAAAPPX8j2ti1o/NV0uPiMZJL8Qop697tIyPQAAAAAAAAAA1iKfvtlxOT98v8i+J16Av16aBTwVLHQ9AAAAAAAAAABAqi2+d701P7uSs76VB4a/gR/jO/os6rwAAAAAAAAAAOalyb1DBI0/Q3sTvm+RO7+oLcS9688lvgAAAAAAAAAAwOyWvV/QuT9bBaG+XN4Hvrj0FDy0BxA9AAAAAAAAAADtUG2+W5uUvPRAqr6C65q/UstcPUhYwDsAAIA/AAAAALVpDb9A1Ew/HXtxv2tGQ7+ylQo/1ZGyPQAAAAAAAAAAmpohv6gL1D0btUi/bUWov9xgF7176Ms8AACAPwAAgD+aKpo8+PC2P2RwJT5d1gU93mKLPKqMqT0AAAAAAAAAANAvCz8I2Fw/S75aP3R3Y7+LA0U9TgraPQAAAAAAAAAAGuG+PqWitT9QeE8/91DCvogMq75cugK+AAAAAAAAAABmgn09EqCdPwgc9T4twh+/Sh7NvZNaK74AAAAAAAAAALNhzz7764M/cq83Py0JXr86q+G+eJfwvAAAAAAAAAAAXY+OPrTSgz8Yccw+FQsuv6mHMT0V95U8AAAAAAAAAADTC0w+r4OkP6CTAj9Aaeq+KUJwvu5Q1j0AAAAAAAAAAKYAPT6lPvM+3QITP9Sun7+/7RS/cpPFvgAAAAAAAAAAZnQVvS+6Xz/18ia+z/GMv7zVO74om4G8AAAAAAAAAAAAaOM73tCzPyrzMz8zA4u+1qQDvJYLI74AAAAAAAAAAM3McLq1xi8+c6vivKSqtr/U7+I9U9MHvgAAAAAAAAAAhngVPv0jmj/N0QI/ScYCv7n/yr7iEn++AAAAAAAAAADNt608MyupPz7H0j3veam+d+b2Omplyr0AAAAAAAAAAFodJT6eoS4/qiEFPmMdUr8ArVY+GsI5vQAAAAAAAAAA7QwNPsMOlj8+/xI/sK0Ov3C1Fr5moh2+AAAAAAAAAAAaMB89iTWmPtR/kD3KQJq/zMvRPbnCrrwAAAAAAAAAAMAqJD5U7OQ9angmPkbqsL/ZhDi+YAfruwAAAAAAAAAAoyVhvqlaxD91+k+/2k+BvQA43D6KYc4+AAAAAAAAAABQx6Y+uwohP4JuMT8AhYu/cJfcvhKjg70AAAAAAAAAAPZ7iT4IpsY+K5rjPt3dnr8c4V2+PtDiPQAAAAAAAAAAKO8AP4EniD945Gc/fvg0v1fxgL5CdzW8AAAAAAAAAACcAQe/JPtMPnsXT78vjrS/hyoPP6d+yT4AAAAAAAAAAPAqND8zyXM/xkpBPxqPar+D2k8+UkiNPQAAAAAAAAAAAGhpvnV/qT8S8L2+NFHKvmvlIr7LE2S+AAAAAAAAAACzGxs9aFSqPzDkHD8dkiW/5XH0vJJWJ70AAAAAAAAAAGYf/bw6+7E/IfNHv3Togb7qTQA9otQ1PgAAAAAAAAAAGsB3vqM9SD8VYxO/jrhWv6z8Hz4eFBW+AAAAAAAAAACaJKg8romXP66F2z3XG0i/vUNevKfFkj0AAAAAAAAAACAZXT7B0aM/VfXCPpf1Cr+QO709zBwJPgAAAAAAAAAAZslHvkWAHD97puK+LQqNv1ZRLb3oD2W8AAAAAAAAAAAzsxe9ormmP0PIWr6mAfe+KV9WPao9wD0AAAAAAAAAACYv4728bDI/dQh6vmKxcb/BEHw97fGlOwAAAAAAAAAAQDlwPmgN87z1lHw+38Kyv8FtJLt2GHA9AAAAAAAAgD9NynA9jewKPo6QWD6eepm/gw6Evn4uxb0AAAAAAAAAANoB4r4aJZQ/8tldvy8GKr8jCYg+ju93vgAAAAAAAAAAqonfPi28wj++60w/mTymvnDMTb5y0FO9AAAAAAAAAACY35e+biAWPzCcdb7BXJi/2dpyvkraKb0AAAAAAAAAAA0Ms71HIpo/TiOjvkkc8r6NrSy9DwjCvQAAAAAAAAAAZgCnvJuWqz/f6pC+Z4wDv2by+js3cAG9AAAAAAAAAABSPA+/6egsPnHTCL7ADZC/DEylvXyykTsAAAAAAAAAAGaW2DrnPKE/3hBmPJV7Lb8mIVy78+lKugAAAAAAAAAABo4Kvnl4vj9qXkq/9xrdPf4kET6BeQU+AAAAAAAAAAA2yGa+VoJ0P+ZQFb/RpVq/AFC5PYXz2TsAAAAAAAAAAEDLhD19roY/bXmrPUkQJb8K1/09LXVNPgAAAAAAAAAAHlCZvlh/Cz9GO0S/xsmVv1VPbT6m+Rg+AAAAAAAAAAANxo69M7O3PyC6Cr9NS1K9YHp4PGF4E74AAAAAAAAAALOqTT42E8Y++OkTPs5mgL8CPWU+Ky/3vAAAAAAAAAAAMwcAPMj1tT/XnUo/0SzyPms9FLwylTe+AAAAAAAAAABNqLQ9wwy/P0BYkz7OFEW+OI4pPckXiT0AAAAAAAAAAEAxr71kEH8+HmIevkr+gL/q8qs8k1dTvQAAAAAAAAAARp8hvkY2PT9XOrW+uaJmv56unz4k5Jq9AAAAAAAAAAAgZUq+QKuiP1+Pj751KAO/cIo2vqfliL0AAAAAAAAAAADuKj3mEJo/6CpxPv5RH79meUe9ZbGIvQAAAAAAAAAA+uSXPrzdgT8+h08/9dNTv7hC8r4C76O+AAAAAAAAAAAzFbo83h2xP10M8T7LT4y+z3bWvHk3Hb4AAAAAAAAAAOBpFb546DA/JuL2Pd2mUr/QVoC9DTeePgAAAAAAAAAAmg2tvRoHpT++FqG+DUQBv7TNoL3Ta169AAAAAAAAAABqAMi+3dATP7xggb8uHYu/MWipPhurbroAAAAAAAAAABqlcr18KYk/R1oFvmejBL9weXO9zFcCvQAAAAAAAAAAs4x7Pc5Pkz/0xjs9600gv+nZej4HLJU9AAAAAAAAAAAmrky+5I2UP8OU876WT/e+H5KJPlaFFD4AAAAAAAAAALBtf75hHh0/NxILv7cTmr/2i5I86tIrvgAAAAAAAAAAc0uXvdbgrD8AfaG+z7W5vnwv8DwlvvS9AAAAAAAAAACaQMs9nK2DPyieyD6V9m+/WLCovUrUnz0AAAAAAAAAAM1bpD1ghmU/vlMRPkSYhL/SUMu9Q2TzvAAAAAAAAAAA8xh/PrsuvD+lygs/gJBdvk+HEz6iJXU9AAAAAAAAAABthGI++pq/P6AhWj8RLLy815NPvog8UL0AAAAAAAAAAGpwET+xLbM/jo1eP2yEHr9yYa6+HYZvPgAAAAAAAAAA5sUrPTZGPT86Hns9Tnl3v5bLKz6WMBS9AAAAAAAAAAAzAzG7USm0P0x+Er7xEbW9qXOpOyCBlT0AAAAAAAAAAIgG5b4Xmok/nr9hv+3yNr9dd+U+wgjxPQAAAAAAAAAAyZhvv8/2Rj7gLWK/HjabvxUu4zy4+BG+AAAAAAAAAADNx4K8yB62PwI5Xb7fDqs8xz9FPPNayLwAAAAAAAAAAF1bob7o3/k+A6Jpvvi3g7/Ufx2/ErgFvwAAAAAAAAAA5uRfve1+rD/xega/dfi8vnemrz3iblg+AAAAAAAAAABqd1M/j1mPPkO8Zj/Xv5+/1wWSvY7omz4AAAAAAAAAAKMkgz6zCig/2ZCCPiryYr9e+I89e0UrvQAAAAAAAAAA5n2YvdaSHT8F8CC+DI2NvyGUDj0r1RU9AAAAAAAAAADt0JA+IXM1P4qMkz6eWGS/bOPiPNzMGD4AAAAAAAAAAPW+BT8lp1Q+uGuBP8kDuL9A3Fu/no4fvgAAAAAAAAAA5gMjPWgJhD7ivtk9OnCdv7vfaD2ibTC8AAAAAAAAAACaaUu7EteQP5iEQz0PKSa/8Hp6vuXzTL4AAAAAAAAAAGYBhrwuBKY/KGaJvSrj9L4/45e92QW9vQAAAAAAAAAADYKEPoE1vz++UEI/unI7vshOnL1OvgI9AAAAAAAAAAAdI5y+SFPLPwnDO7+J4jW+ojX/PCtxsj0AAAAAAAAAADPMSj369LI/iE80P/pFCL4npDW9myezvQAAAAAAAAAADXO8PcCnqj/M30o/XzO2vvFwy72fziW+AAAAAAAAAACajei9yHGmPzUsOb/Ta8K+wQPNPWvUtT0AAAAAAAAAAACAmLrU6bM/qmTxvf9Vc77YmrE6W7faPAAAAAAAAAAAk3psPpBqnD+CY1k/ehYTvwDOwr5bW3S+AAAAAAAAAACaeIS9pJGKP+k1v73qezu/16OBPUgOnTwAAAAAAAAAAA06mj5/kqg+grbSPmxtn7+0deg9Z7qyPAAAAAAAAAAAYOH4PmoYEz66+A4/F++Yv9Okqj3ymaM9AAAAAAAAAACG6Wc+/Nm/PwNIQT/1kbS9fW+Hvro2hL0AAAAAAAAAAKaxgD0CX7Q/h8RIP2OE3Lt9RnC9To4kvgAAAAAAAAAADa2hPewqjj/lyaQ+sepIv1wcgr1or5k9AAAAAAAAAABmF4U9PLyKP9qD2D22Ti2/F863vXEuCL0AAAAAAAAAAM6xIL8pWSI+WN9Wv6Qcm7+6QS89QhthvgAAAAAAAAAAs5IbPpEulT8EaSw+B3sVv1FtCj4jaDM+AAAAAAAAAADN9ss+ns7nPlJmTz88UpO/tC3FvdvP0j0AAAAAAAAAAIAH3b2Embc+oqaDviJMmr9TexU9L90DPAAAAAAAAAAA8+m5PbI5wD/GvKw+QwzZvcN7lr3auoy7AAAAAAAAAABjLfI++X7UPpac2z6rG5O/ng2rPtIeUD0AAAAAAAAAANrGsj1vErA/ztO5Ppyjm769dg49+MFyvQAAAAAAAAAAZuLUuypJtD80RYy93LWAvqQaAD6aCTK9AAAAAAAAAAAaGLY9v8CiPxoaQj+ZbhS/YLy+vbosCb4AAAAAAAAAAFM4ib6PEZM/xo4/v952NL/Qvsw9bxQPvAAAAAAAAAAApmaEvtciXj9W/C+/1FR4v+8oMb0BM6W9AAAAAAAAAADjL8A+NjmmPz9SIT8ZkzK/HRyovlJxfb4AAAAAAAAAAGam471lS6o/2Pcov70WoL7LYJU9guqdPQAAAAAAAAAAgF0nPlFrtj8yhRU/l62PvvSKPL7t7ym+AAAAAAAAAAAz63m7saa3P8vk1TsSQHu+bIADvmA6w70AAAAAAAAAAB2mCT+cuwA/KqV5P1xZnr8seRq/odcMvgAAAAAAAAAAOlGnPkMAyD68TBA/Dp6Zvzpf3bww6cM9AAAAAAAAAAAwXcQ+fU4ZP/aP5D77sY2/Tr7YPtLIzj4AAAAAAAAAAJqOi72PvKI/VRD8vp98D78as4Q852ETPAAAAAAAAAAAQwDYvgK0Qj6YZBe/mTWgv18O1z4cHAO9AAAAAAAAAAAz4wG7Ujy+P/FVJrwxQSC+khvSunXd2D0AAAAAAAAAAKAyBr7Q278/cw8kvw/ucj1aAQA+I3gNPAAAAAAAAAAATUi6Pu4vtj+y8yM/6TLtvhYqer2f2q09AAAAAAAAAABmN3O9Qv7sPk2SXL3QaLC/y9eWvruZir4AAAAAAAAAAEDZoz2TJCA/+nmGO9Bjhr/0qXo9nY/lPAAAAAAAAAAATXWfPc+SeD0NBlI9sdunvzeKhD0ArLo9AAAAAAAAAADm1X49e3OmP/qQSD/UYim/4ZGSvV5IEr4AAAAAAAAAAADv2z7R4rM+/CqOPpdDo7/WAL4+Tn8bPgAAAAAAAAAAmsNoPvZ/FT/WNQ0+QTBkv8U1MD6+gx+9AAAAAAAAAABmQjc8NsnZPtq4xT26vZG/BLJzvoVGAr4AAAAAAAAAAM31dj5hnxY+VvOUvexEp7+YKIU+fi1vvgAAAAAAAAAAmo6jvFxaxj+Ner+9Q4BAPvzNUjxMhqY9AAAAAAAAAAAaKts9VxfAP+NeHz8/MyO5SegzvkYoi74AAAAAAAAAAC3ssj6p/gY/LywmPw3Rjr+k+8C+dl5wPQAAAAAAAAAAZopKPanvDD3WhVo+KjtVvSPmZL+FzYY+AACAPwAAAAATKw0+oiScP3Jiyz7gxfS+bJ4tvgxyMr4AAAAAAAAAAOY/Ir2q/Lo/snJMv8J62T5Q0FA9gMBGPgAAAAAAAAAAjY4gvoQBdT8cgQ+/a+1TvwvbxT0QwEo7AAAAAAAAAADXB0q/MXhqPniXfL8TOay/94X1PcBQa74AAAAAAAAAAGaGJTriSrQ/tzuhPDrx2L2IgZO8e921vQAAAAAAAAAAGnuyvb+OtT/C0vu+QxymvRauYTy4H0a9AAAAAAAAAAAarYw97GK9P5id/j47K909gllavf7Lt7wAAAAAAAAAALPrsz2UcpI/0TuXPupvIb9eUg+9nlQSPgAAAAAAAAAAgGI8vY4aqT/xTxS/JHQVvxtjVT10MgA+AAAAAAAAAABg4ci+IS9XPtBLzr5eGoq/GhVAvcLZrz0AAAAAAAAAAAC33Tw8b7E/BqrsPgM+PL7x8s685ee+vQAAAAAAAAAAZpF4PdJ0pj+eEoY+itHMvideGj3hvSc9AAAAAAAAAAAQU46+u3KVPuWn8b75nKy/Oz2VPraIlbwAAAAAAAAAALqqST+NCQY+S1VSP5l+nb/iTz2+e1qIPgAAgD8AAAAA4FtzPkIApD/mFM4+RqEavzpYkT0s7b47AAAAAAAAAADN6pk97S7BPi7EUD41QZm/M4dLvuCsND0AAAAAAAAAAADweLwTFbI/SH1Fvw1s3r6um4s89mkpPgAAAAAAAAAAAMjDO9ZwsD8Vb1M+gEr8vpAEmbsrfs28AAAAAAAAAABaK0M/S2uxPZiJqT/HYq6/kBZGv7YADr4AAAAAAAAAABDZgT56ajs/HmMMP9dngr+N4YM91dj0PQAAAAAAAAAAZmZAu3GJrz/UiSS9YMyivsBWpjziHQw9AAAAAAAAAAD9Jtu+xzriPuoUL7/g9pu/VCcFPSKUVr4AAAAAAAAAAAa1QT40Bhw/Z4CVPtcCfL9G80c+u8RmPgAAAAAAAAAAa/fhvn/8oD+QGN2+26Qrv+U7K72RBws9AAAAAAAAAACtiW0+vGMOP0qNmT5EOYe/B7/sPu5oUT4AAAAAAAAAADMsgz0hj7Y/MJ84P57gjz1BrLC9SshQvgAAAAAAAAAA5pTOvRtOkz7h6b698nenv9f2Gr4z1+29AAAAAAAAAACKt8i+lVInP1bx7r7uO42/pP4Fvl6bJz0AAAAAAAAAAACsPz2nYBo+cWaZPRQLq7/NAua9fmZWPAAAAAAAAAAAnUYFPxK1MT7vcyA/+9yzv4ub9b1UZ0A+AAAAAAAAAAAzYOS8QAyCPzprD77961u/EvQ6PjNOiz4AAAAAAAAAAAosfb597mM+GyJrvstgkr81bka+4gx2vgAAAAAAAAAAAI+nPjBVnj/tsEQ/xvECvxIKVz2/26c9AAAAAAAAAABmUJw9APuOPwIwQz7QUB2/cAOPPcoVvL0AAAAAAAAAAFu8LL8+/Po99S+mvhpbnb+fjky+f3O4PQAAAAAAAAAAJqilPQzBxD8arpg+zbU9OTbsyDzqDFM9AAAAAAAAAACaMMk87Ek0P2D9Tj1kdW6/FYfkPc5Kjz0AAAAAAAAAAJMX4z4UhoI99XWUPXdArr8I6j0/E7CgPgAAAAAAAAAADXcEPmVBsj+13DI/7lo8vrkr/b0fZyi9AAAAAAAAAACNWvU9Ek6rP2wRjT5U1Q6/TLKEvvOo+7wAAAAAAAAAAOZkOz16Vcc/6PZNPsA2CjtIwBI8X6WuPAAAAAAAAAAAMxZKvb+IIj+/E6u9J+eFv5f1UL5uh7a9AAAAAAAAAADNJj68U+COPzXUCb6+2yO/MO+KPlcDuD4AAAAAAAAAAFp3mr24Mbc+loX7vIO0ir8tgeu8upDXPAAAAAAAAAAAhWOnvmcSkT9wXyK/WU9Jv/raV77VwMQ7AAAAAAAAAACgqi2+D12CP0KTib4xIEu/kyk4vjG/ID4AAAAAAAAAALN6GL1aMDg/MCCsPTRkkr84uza/cInMvQAAAAAAAAAAyleEPopqKz+yRg0/0s1yvx2Zpr4eM1W+AAAAAAAAAADQaZK+NclSP5+jw77fu4G/7b5UvV7Zqb0AAAAAAAAAAPBwMj9/8BY/1DgCPy3TdL99rUM+epktvQAAAAAAAAAAk6e/vtOifj/a9HC/+VA3v2cFpz5L2Ru9AAAAAAAAAABm4ng+k2CYP/BGiD59rUG/VIo2Pm5IKD4AAAAAAAAAAJquyT0+mYs9pVbcPSWvmb+03aK9bsVhvgAAAAAAAAAAZuR+PB5WuD+/QaE+fw9iPidwBLzbm6K8AAAAAAAAAACzp4g+KDaYPocUFj89l6C/IZltvvdWPT0AAAAAAAAAALr6Nr7l8Yw/EWyZvj/PJr+a+d29MmoFvgAAAAAAAAAAZj7hO3VNtD8Cn68+F72CvfhG0btOlEK9AAAAAAAAAAAqHyc/IuliPscdOD+6Uqq/XU4tPctFsT4AAIA/AAAAAM1YN7zzF7Q/8mlCvq8XSL31gtI8LUnHPQAAAAAAAAAAmqG9vGGcRz+ipYu9bhBnv4YelDwu+cE9AAAAAAAAAADNIIo7PBq1P4YNbT35CoO8hgB6O82pUT0AAAAAAAAAAGag7zwfF3M+HJ6UvbPCkr86630+1cKvvQAAAAAAAAAAGquWPURMoj/8abQ+VUHpvltQIj1W9cE8AAAAAAAAAAB6kRW+3rZUPxeEnb7SF2K/BSpWvbdfHT0AAAAAAAAAAGZTE70AOYA/dd7MvVaWS7+QYGm8OIVUPQAAAAAAAAAAMwSOvepIsD/aUTC/9f4+vmBkMz1OD6g9AAAAAAAAAABAAhI+p+bEP+4xPz+emt89vTKVvaVi17wAAAAAAAAAACCHyD6QcXQ/nhFPPwfFRL+8yJm9tmfyvQAAAAAAAAAAgEhSPgknpz/zQFY/HoxpvmXVWb6rGVe+AAAAAAAAAAB6BJu+jNy6P5DZK7+/Ssm+mgCRPpnUEz4AAAAAAAAAAGZ6+j1G+Lk/dNUAP7eUhbx+E4G+dYtwvgAAAAAAAAAAAAmJva49FT+mw9C9l2Kgv2Qh/L0S6Tu9AAAAAAAAAADNVda8gkSfP35h6r2bPv6+C82SvR0J6b0AAAAAAAAAAC6s+76KXYo/3tlXv0Q0OL/fX+8+B4pAPgAAAAAAAAAAM7rhPSh2sT92p64+vurAvryqYr6SRBg9AAAAAAAAAACafxK9LjqvP+5dGb8HU8G+bFNBPVz9Cz4AAAAAAAAAAABeSz6deqQ/5s4sP4R35L4zB82+2iR/vgAAAAAAAAAAnfmJvgGqbz9xQB2/t20lv34VWj6JO8a9AAAAAAAAAADtggu+5Fq1P7azpb41lnC+IptvPXBNnD0AAAAAAAAAAGa0jL0HtLI/KrctvgJ3vb7mQXI89s7nPAAAAAAAAAAAZgbRuqTYtz/nxRa9ZeeVPtVwc7pt//q6AAAAAAAAAAAmZzC+ygWGP9YKKL+fDUm/Nb9JvZ7sgr4AAAAAAAAAAM1xHT9sygY/YgRAPwY+m791oa09En9WPQAAAAAAAAAAM6s5O7mIvz/4nOs8b3WLPn9WB7zEQAU8AAAAAAAAAADApIA+iFUDPwZPBD8B+I+/CY36u06Dcj0AAAAAAAAAAE3KXr0mibY/fkHyvb0B8r7AHtk8jfQFuwAAAAAAAAAAM9M8O0Grsz+LQxs9uVtkvo8q5r0w8vK9AAAAAAAAAABNKDg+RAs5P0ie3D7eFYa/v7mCPV5wjDwAAAAAAAAAALJuJ7+1k0E+SrcVv4/agb8ZfrC9YBl7vAAAAAAAAAAAM5AdvVrKtj/ys0i/Cr8IPib3MT2J7yw+AAAAAAAAAADqbnq+h42IPzuePr/loCy/fmPNPlEQIj4AAAAAAAAAABpvnb0fAqE/sckcv/LNIr8xW/s9+308PgAAAAAAAAAABtWCvvwZlD8rUGO+4kYrv8EwN78wb7O+AAAAAAAAAAB7kxy/UDb8PjrrAL8VToq/Zmozvsoonr0AAAAAAAAAAG0hSb4vDIY/PnsZv4t7P78d8/E9KqzcPAAAAAAAAAAAJlMAvgZWaT/+89C+5lxkv1HUiD3G26C8AAAAAAAAAACAxrq91YddPtXHUL2b96m/BD2yvosBqb0AAAAAAAAAAC1YNL6Tgb4/TuwKvzw8SL5gm2w+dwYbPQAAAAAAAAAAzehMPFfFnj8tsfo9r24Vv0Y7KL35Iw++AAAAAAAAAACb5BA//62yPpMRRz+2Iqm/RsiRPfY2+TwAAAAAAAAAAN7clr54H4g/arInv4euGb+i0IK8lOMTvgAAAAAAAAAAQJsEPlLjCD8mYaA+4WiUv5ehMr7vJwY+AAAAAAAAAADgPuw+uLTLPq+hGT8OSqu/GJgVvx0Mcz4AAAAAAAAAAFbvJD+bUVq+9gLSPaI8r78WeQU/Ojw8PQAAAAAAAIA/ZlRJvLM/cT9/I6Q7w85Kv+zlw71g3PO9AAAAAAAAAABm2fE86l6rP1iozT5sVwa/70FLvPCgcj0AAAAAAAAAALMVd72fM3M/Dpwavt2VZ79hezI+pizDPQAAAAAAAAAAhavGvpixDj/2Lk6/QcyUv5w4jz40GYY9AAAAAAAAAACaaiA9UCSrPx2LyT62Gtm+SGNevVpJxb0AAAAAAAAAAICn5L4FQ7g/C7FxvypVgr7PHEQ+fczuvQAAAAAAAAAAnWi2vo2jNT9QdNS+3h+Jv0Gbpb4GDbu+AAAAAAAAAADgBVw+TqXHPpaunD5KY4K/B8RFvM6bgj4AAAAAAAAAAFPERz6CF6U/ynXaPqqNA7+NEuA9hHTDPQAAAAAAAAAAM21IvRBFHj9GuSG9tFOBvzftTr6iihS+AAAAAAAAAAAzmFi93NO7P6cqRb9Epps+yXtYPf2wPD4AAAAAAAAAAJPR+T7frqQ+PZbxPqLikr/sjUk9M/RMPQAAAAAAAAAAABgOPHh3pj/TSsM9lV0Rv6yWnzvbYtE8AAAAAAAAAACmVmG+LYiyPnBzzr4pIpK/9PQyuw1ZyLsAAAAAAAAAAJqpDrvCaCs/Kte7vDsle7+2TWi9aqijPQAAAAAAAAAATbAWva98hj+Nlva9T8xOvzAhjD0yzOe8AAAAAAAAAAAAwCY7DLS1PyxgCD4Tcjc+67iOu9B5b70AAAAAAAAAAHNkOr5imcU/Mlyjvr2O1L0YFHq9vZedvAAAAAAAAAAA3vi8vpb89D45sAq/bf2Pv9Zu1b3STAG+AAAAAAAAAACgFYc+SmiPP0aEAD8fE1G/Joy/vlKLj74AAAAAAAAAADMwIT3eRIg/Up6zPXW5X7+FfKk7IrravQAAAAAAAAAATTLnPZTJ8j5rqV0+48Cev9dSBr6NrWu9AAAAAAAAAACAuM49xC+RPyj/zz6tVzC/k+3HvV5ZkDwAAAAAAAAAALmsHb/9a3g+b28EvyOEpr9qYqm+kukHvgAAAAAAAAAAACxivBufsD9QHXK8FzVYvr2vSryyINC8AAAAAAAAAABz8T6+UfWqP0kIgL59bua+5VGSvCqsML0AAAAAAAAAAIq/iz4imW0+NVlbPiLvmb8TsHI+nCiovQAAAAAAAAAAM06GvBbvpT+oWN69Qk+2vpLFCz0DnsM9AAAAAAAAAAAtJwk+cnBzP0zimj43AlG/qCIdPndKrz4AAAAAAAAAAGbHEL40JpI/tooiv05LL78gjDM9UpXAvQAAAAAAAAAAXvIQP8/bpL1jDDA/ipWsvw1sdTy3nas9AAAAAAAAAAD6eQy+QZpvPxXuCL++/IC/W/aEPlayfT4AAAAAAAAAADOyfT1K1aU/c+gWPgUuo75sfsU9YzziPQAAAAAAAAAAoxrUPk7tMj/JARk/WXSGvx+dl75O73a+AAAAAAAAAABmwi48Ev2cP66kBz3+aQe/D9ZRPVIyDz4AAAAAAAAAAPvlxb4iKlg/zmf0vrQNUr9M88S85DuIPQAAAAAAAAAAZgAUPs7auj8VFQc/1WEmvpq99r1yuj69AAAAAAAAAAAGhjU+Hn6KP2b0Oj7CvSy/4hcOPmC8nbsAAAAAAAAAAGD8dz6dYAs/PRjoPu4bjL9D9Ao9el4CPgAAAAAAAAAAINcnvg6qqT+5Dxm/+dugvgJNpj1y9YM9AAAAAAAAAADq2iC/mywXPwjJTr+EI46/9J6gPprNGT4AAAAAAAAAAABWlz7zqIs/5q0FP7ITWL8NFkq+4BbyPQAAAAAAAAAAszIVPfjqwj/GGhc+tFmUPFfQFj28nQw8AAAAAAAAAAAgkWo+mmmlPzKRTD/fX7K+rB2tvfVZcz0AAAAAAAAAAGYlh73dIZg/MHDdvcWLVb9RcXW9+Pu6vQAAAAAAAAAAzSSkPMD5lz/MNSI+UhNGv/7v6DzYA9c7AAAAAAAAAABzWOG90pcuPzp6J75/PlG/LrvWvcRBEr0AAAAAAAAAADMLpz5dD8U/KlgJPwUS+r6BJ3y+dxwSPgAAAAAAAAAAJtf3vY7z/z4b+2m+0UWHvydmvD11qP69AAAAAAAAAADNm2G9VeGvPwSKSb9pWXW+hLsvPYQCsT0AAAAAAAAAADMKHL7WipE/So27vnkRDL/AGhA+znNtPQAAAAAAAAAAnVxjvpUvwD+urja/TnHnvTFAgj4LoSQ+AAAAAAAAAAAz18s9bzWQP3CnUj48GRC/FKmUvU7pMr0AAAAAAAAAAMgzrL67OtI9dVD7vd1Gn79Vlz2/H/u5vgAAAAAAAAAA49O8PhHkcz9E4Dk/B/xav1L4kb5un947AAAAAAAAAABNZ9M++duYPyRNSD/L1DW/zP/zvrI3zr0AAAAAAAAAAHBSab5n5/4+rDeivgcAk78ZoiC+MBZQvgAAAAAAAAAAYJkkvmD8pT7rV4K+xZWivw+VGT6cKaI+AAAAAAAAAABKbQY/PjmkPyrxFD+nGBm/MWVwPpgr4r0AAAAAAAAAAJq2pj1T6cE/E5i0PnaORL33MHm+YEdNvgAAAAAAAAAAMN3dPqxsxr2GKAI9iYA2PZ9YOj2y8HA9AAAAAAAAAAAGLqY+pLOqPlODGz+hS6q/v69Pvoqqlr0AAAAAAAAAAJo/m75amdA/+v0Kv59Vor3rwUI8FBsYvgAAAAAAAAAAbaOgvmBQaz/blQK/saZ9vxI18Lz3KEQ9AAAAAAAAAACQDis/jBC0PhFbPz/va6W/R/LhvXZBCz4AAAAAAAAAAHqbsr73rpE/hktDvyQL075yPEC7r1KkvQAAAAAAAAAA7bAJPlbZ1z//x7o+dOz3Oy18n70K3L49AAAAAAAAAAATFAo+157HP4Ob4T50dgg9WqKXvZbnwz0AAAAAAAAAAObjUL12+aQ/Of2Sviud3r6GgZY9wrCCPQAAAAAAAAAAACBEOg3SUD+jJ889HSxzv/dkN75aZkG9AAAAAAAAAADmHZA98U36PWI/gj3NGqe/y52cPWcztz0AAAAAAAAAACakUj7302A/9kjEPg1+VL/9/CS+tPMrPgAAAAAAAAAAre0OPhOksD973To/oMeJvgQeDb7qE2q9AAAAAAAAAADNeVQ9l2imP+cFuj6sotu+miK4vNUlkjwAAAAAAAAAAJpQpj5UTaY/Qre6PkvY8r5oPbI+bdqSPgAAAAAAAAAAJqzsPTmvFD99nY4+t/OSvxGHSb6VnuQ8AAAAAAAAAACmyfW9afRxPZo5vbzGhri/Q/a4vvzFv7wAAAAAAAAAADPzKrtB3rM/R0iHvvKzgb7fh0Y7siV1PQAAAAAAAAAApnE1vi2MST8YheG+0eZ0v5gZ1z7KQj4+AAAAAAAAAACm+oW9c5qxP52PIL9HS2e+CeyvPT8zgT4AAAAAAAAAAE13wz1suqs/uzb+PrxMpL6lXCy9RZyZPQAAAAAAAAAAzbN/PZLSsD+ueDg/V2CBvqmVq73y44K+AAAAAAAAAABTMyG++IWWP5jePL9HsyS/NTdrPidzGD4AAAAAAAAAAP386D5MXaK9apKqPh0u7b1ttF4/wj6mvwAAAAAAAIA/INoVPvyYrj8Z5Es/BeSUvvNB6L2yl/O9AAAAAAAAAAD2AFy+RN2RPuA/ZL50kaq/uPOtvBs0Wr4AAAAAAAAAANB49T68x4M+XHYTP5Usm7+2Gti85RmAPQAAAAAAAAAAhp+XPlq2rz8oiic/HsT7vhLOx71kQiM9AAAAAAAAAACaqsa+AqV7Pz5RFL8L6FK/O/eWvSKjY7wAAAAAAAAAAGZWhzxyM8I/Bp4LPqNIoT45ib071L0NvAAAAAAAAAAAPL5WvzJcJT9VqoW/WVSKv93GI71rqoa9AAAAAAAAAAANjRy+WrebP0zcor78HzS/Wu8Fvbp0cD0AAAAAAAAAAPOKpL2ZXWY/47SFviGRar+Wq5U8emH4PAAAAAAAAAAARhyIPvGCWD8P48k+6vpvv0Req726pqg8AAAAAAAAAAAN+cM97qNFP0WCnDzapnq/0IIHPlGhwzwAAAAAAAAAABuJnL4BQkc/LjsGv/fSfL/l6Q2+B/QwvgAAAAAAAAAAZjaTO4dORz+TVwa8luN5vzMvEz6++uM8AAAAAAAAAAC9jOY+zJURP7MAcT8C/52/mUeWv1iiOb4AAAAAAAAAAJqfPLznHLg/WR3Hvp9i0D4VxlY8qrSwPQAAAAAAAAAAgK0uPSxvvT+W1go/ite3PnWik71mymO+AAAAAAAAAABmdzk9Rkq3P0HmQz4GME2+lxXSvAve070AAAAAAAAAAOaGYD3r0LE/OUrEPpp65b0W7QG8EeWuPQAAAAAAAAAAc76TPlO1aD/iXFY/3t85v4dFYr5m3209AAAAAAAAAADmf8C9aMCsPxowjL5/MMO+2IXcPXp1Rj0AAAAAAAAAAI3/Gj7hd14/14gAP3JojL9KU1m+XIAFvgAAAAAAAAAAAL2MPhDktT/Y1QM/FOXAvhtpLj34bz6+AAAAAAAAAADafAU+cxyoP7u0bj7+UPi+9/uWvdu+zT0AAAAAAAAAAB0SKj/3/yo+Y6E+P8Gds7/c4Xs9FlyQPgAAAAAAAAAAph5tPmEw/T46RtY+Ll+Mv2HZMz42Kd09AAAAAAAAAAAmfuU+LrPmvP4uEz+6uaa/0k5YPtU3GD4AAAAAAACAP92qeb6APBU/q3NQvvJ0k79ZgA0+AqXZPQAAAAAAAAAADk6fvgO7Tj8C9Uu/T1iFv2mR3D49ym8+AAAAAAAAAADtCxg+nBuvP3s0Gj/Lw4a+pc2Eu5S3DD4AAAAAAAAAAPV5zL5yTEw/0Gr7vhwuYr9N04W+fp7lvQAAAAAAAAAAJmB5vu7Yqj+2VDi/vE3NvqfuhD7qLiY9AAAAAAAAAACmaj++bS3GP/gA7L5LpDG+z+jePQ2TLL0AAAAAAAAAAHq8Dj8dLwa9mjIrP35Ztb93PGk+i8UgPQAAAAAAAAAA7S1MPmhWnj7IV4I9o/6dvzGrEz4VfpS9AAAAAAAAAADglRe+bp/NPULLP7/PNaq/e1xKP0BfGD4AAAAAAAAAANLc3b4/6R4/NfbnvkwSh7/8Whw9SNhJvAAAAAAAAAAAXXW1PtLZcz8++hc/UndZvwfLZr7IaGK+AAAAAAAAAAAa9XC9ixuoPy1wPr/LmSK/uKGSPaswND4AAAAAAAAAAE1FFr7YnDE/yimPvjKHcL+M15q9pqmRvQAAAAAAAAAADYOXPg+VQj9dcAQ/fSxavzwhBD4tc868AAAAAAAAAAAmdfo9jZqgP8NH5T7+puO+IaHAvVOA2b0AAAAAAAAAAHGrAb/ITZk9A02Bv9Gto7+uh7k+bg1zvgAAAAAAAAAArXM+vut/rD6cZ4w8sTGbv+9gtr6TNxQ+AAAAAAAAAABtpES/c75jvmNY6DnVimq4jSuePQi9tbcAAIA/AACAP0ovIL+3dic+q4jivv6cr78ch02+wFfqPQAAAAAAAAAAJnVtvvNSTz94MVe/rM+cv0XL1j7uV9M+AAAAAAAAAABmzoe7ureRPyqLS71pwka/XRITPEaN5z0AAAAAAAAAAAksCL95Wyg/OdQov2kqkr9krNe74YWKvgAAAAAAAAAAyhGcPniipj3IdwA/+fy2v6pT6L4u8Li9AAAAAAAAAACAGPy9K8BzP6qS1b6KUUi/Ao7dPsL+cT4AAAAAAAAAALXy8L7PITc/SF53vxxZhb+jZgM/A20sPgAAAAAAAAAAzU5/PNbubD/CrWW9d8AsvzRQCT6TetE9AAAAAAAAAADN4Cc8hAIMPz+bLj1pola/jc0dPHKBCT0AAAAAAAAAAPP8i70Kaao/rj0qvfOWBb+80oK+CrM2PQAAAAAAAAAAYFEVvrlWJj+10K29UOKHv3zNRL4P+z+9AAAAAAAAAACKEGu/NKOvPiBmnb/sZZm/5ASGPmJ3fb4AAAAAAAAAADPrQTtn768/QnK+PUHOEL+ajtG6e1ppPAAAAAAAAAAATTc+PhT82D1Ip5A+S/ygvz/evL3tXPG9AAAAAAAAAABmMBw9/0LEP0iw3z1Ph2S+imNNvSa0ab0AAAAAAAAAAM1kJD0FkL8/doewPrQ2fz5CdxK9GpGwvQAAAAAAAAAA+qR9Ph+TWD9AFFg/vcN6v4mQFr/u3AW/AAAAAAAAAACzXAu98Fu7Pw9FFr9pSaY+EhhGPe2mVD4AAAAAAAAAAM0MqrtkiqA/j7ECPr60L793PHK+liEPPQAAAAAAAAAAQ5Z8viyN0z5SPLq+Da+yv5N+ED8qlkw+AAAAAAAAAADzdWe+ZvgLPzBCy748jny/2B/IvdLUxr0AAAAAAAAAADNWibxamKE+/RMRvVGPk7+TDCU8IvFtPQAAAAAAAAAAbdYePpIJoD/2fk0/QKkSv/rEgL48RqK+AAAAAAAAAADAwbO9r5pxPx7gB771YG6/fuUYvoz2tjwAAAAAAAAAAACOJL1eZbE/OYMrv6GwgL5M4cc8nrCGPQAAAAAAAAAADUZRPu6OkT+ELAc/XgYUv/SpMzzo5T89AAAAAAAAAAAmApu9SHbAP0EVwL7hZd07VCWVPTYP4DwAAAAAAAAAAFtHAD+8BD0/VehNP/ZsZr8JQlO+OtLxvQAAAAAAAAAAJmtYPmhCdD/qbgU/shxev5ZtNj05CyM+AAAAAAAAAAATVNo+j9xwP3eLST+hv2i/5e0Mvqmchb0AAAAAAAAAABYDib7hLhE/1jO5vrYZhb+UIAm+3eIPvgAAAAAAAAAAXV6EPmRQpz4eKLw+1oChv10igj6W8D4+AAAAAAAAAABAwY691PuaPjl+Cr72poq/derZPJGBn7wAAAAAAAAAAFM5Bb6Rf6s+YzkEvQm3nr8nZoW+7z03vQAAAAAAAAAADcoqvrYbMD9iFtq+sKqYvz60Fz6uqCY9AAAAAAAAAABmxhY8LQegP30J8zzqiP6+TqysPLAwZD0AAAAAAAAAALBz2D7RDpo/4+BaP5/fH7/1rEq+sERpPQAAAAAAAAAAZpLpvMGesz/quDq/NzD/vep3Jj2i7Wg+AAAAAAAAAAAahRY9RuaUP17hLD6/CQe/AdADviDuD74AAAAAAAAAACC11L4scEk/ttVjv7nJaL8CoIo+GTZEPAAAAAAAAAAAwtCqvgniAz9UlBS/Tp+Vv1lzPD7DAUE9AAAAAAAAAABtZ1I+P5c8P34xtD6dWlq/zyu0PfXtnbsAAAAAAAAAAJMhvz6U/SA/P70lP76CnL+aGS+/fg75vAAAAAAAAAAARrpRvu8erj9Tw9C+uzW1vpzqJ7voPVg9AAAAAAAAAAAA/7s+uBSfPrXPGz/a1ZS/IWo9vSzVgjwAAAAAAAAAAE3Mv700y4w9zZ1PvovHqb+PGZ8+HoCQvQAAAAAAAAAA0qAQv5SeVT9YLze/6QpcvzOYJj4y1kI8AAAAAAAAAAAN3Iq9Va7TPntzIr6H5ZG/dbbvPaKbkTwAAAAAAAAAAMonrz6nrSo+1u+xPtLHnL9jiZG6gFIwOwAAAAAAAAAA0+9wvopozj5S6vG+qTesv8fu+js1u609AAAAAAAAAAAGy0U+gi+lPyN1bT5CZBq/Un4rPW49AD4AAAAAAAAAADsy576vNlI9oU6bvp3Qs78wS6u+jpeLPQAAAAAAAAAAAEDsPRaGgz9GLQs97Vtgv+5V0D5l/5Y+AAAAAAAAAAAAAhy+hN8UPmh1xr6vnZe/bR2EPhOBFj0AAAAAAAAAAIAY1j4Ibrk+zk4yP+eCo7+MTW6+zZXRuwAAAAAAAAAAWkcIvslpDD/yEqW+NQ+pv+3gKz5+N8I9AAAAAAAAAAANyoG9bLC9Pxjwn762KMk9yEHKvQcYPr4AAAAAAAAAADMz6zxU5KY/RT4MPrSX/L52b868CT/LvQAAAAAAAAAAA9+pPtlS2z5+FwM/qtCUv4ojSr3GOFw+AAAAAAAAAACa25o9HvgOP/lBOD6Wboi/ByIBvcHwozwAAAAAAAAAAL45gb7gBI8/HX0Mv9eNH7+NX04+Xtz5PQAAAAAAAAAAumSbPkkYhz8TXiU/84M3v5V3gz0u66s9AAAAAAAAAACaFda910m2P3Zf+b7nize+6csIPc1SPrwAAAAAAAAAABpMST3yYmc/kh6wPQLFM7+/SCE+vOkxPgAAAAAAAAAAZp9JvaKvpT/dWIW+61m6vjEunrzNxG+9AAAAAAAAAABGaCw+Hy8sP5si2T5/25q/WVH8vPsaYDwAAAAAAAAAAJp2Sj324rk/VtqPPsNmCD0+JIq8OJDoPAAAAAAAAAAAmrZ+PunTnT/iZMw+Oi0zvzwvIT1dXvy9AAAAAAAAAACzAKe9f8lhP+NdGr5q0Em/xNMpvm3oTL0AAAAAAAAAANajpr40C6k/LFk8v1WM4r5ZPqK8EkIbvgAAAAAAAAAAs5xovYKQmz8L/a++1Cg4v7XWSbxtt3y9AAAAAAAAAABmgEs+r4FSP/Ma/D5HSmy/T7d/vv4QLL4AAAAAAAAAAE2Lvz20+JU/rMwLP3ZSS7/5XkA8wgihPQAAAAAAAAAAQOsBP+Bpsj5ShIE/hVmsvzYza78mnUg8AAAAAAAAAACNRC2+r2E8P+1Opb68zIK/EN84vvOyG74AAAAAAAAAADNG37zHy7I/qAEvv5wqJr6yku882E7zPQAAAAAAAAAAQpC7vupJgT4Lzl6/vJWuv5eoPj8Vs7Y+AAAAAAAAAAAmKYu9TCSCPiKMqj09nqi/zJCfvljkwr0AAAAAAAAAAAAq5Tz1tMk+YlnzPWI4j78N/K29QoPSvAAAAAAAAAAAzTgFvZDs6z4uz5S990yfv38ruj2GLz4+AAAAAAAAAAD9m5s+NJWnPy08/D6MxjG/2NRqvl6wdj0AAAAAAAAAAE7ikb5Qj10/vaAKv2VDVL+rDR88muNWvgAAAAAAAAAAmunuu85hsT/5y7y+bDQSvy0HCTzJS6k9AAAAAAAAAABGsw++2qakP9pfh76x6wi/SBpIPNTbMT4AAAAAAAAAAK10JL6DWlq8YmtYPhmSpb/39si+QowvPwAAgD8AAAAAcLh4vzTM4b2B0Zy/Kl6zvxgE6D5SYbS9AAAAAAAAAAAaKRg9p2RnP6J9rb0N9Wy/vVMIPr1Rcj0AAAAAAAAAADOAaT6DyWs9QFewPke3lb8To5y8QmT9PQAAAAAAAAAAM/a2PaRbsT/abdM+8GFdvpswGL3Ygh+9AAAAAAAAAABABHk+ARrxPU3rDD7qn5C/z5oiPmd5GDsAAAAAAAAAAKYaqz0zdng/AM0pPv/ZPL9jW2q9QLpMPQAAAAAAAAAA5gvxPvAvrz4Fqi0/acSlv/1GC71oFns+AAAAAAAAAAAT6Vi+9NS/PWHgrb0rNYu/T/MsvfJLcj0AAAAAAAAAAEgy0L5wdaA+ONjSvrmAhL99YZq9nomgPQAAAAAAAAAAg4BVvtSbrz+6hA6/v4q+vmuqUz6ntjQ+AAAAAAAAAAAz5M484Q/7Pvs9Dj7AG6W/mkUavaoLWj4AAAAAAAAAAOZIeT4CJ5o/YlizPp0m+b76AF0+LFyMPgAAAAAAAAAAms6TvZQklD/LLmG+tncjvxW6Fj76IRU+AAAAAAAAAACaT2i8djW2P4ZE+r0/9pa92kXyO3bOEz0AAAAAAAAAAM0sRzuxfrg/mLLePBWxLj0eWrA8La9PPQAAAAAAAAAAcwxHvmZyvz8R37e+9W+KvsYhTb2vsEM9AAAAAAAAAAAAAMS4T0axP58Gwzr58ha/vqT2uusXI70AAAAAAAAAALNYQT0SJD4/nU9RvFF4ar/+HhI+AzOtOwAAAAAAAAAAeiBGP496fD24c/s+cmq5v9/fLD+hCws+AAAAAAAAAADtNkC+qeCGP6D38b69hTO/c17+vHdXLL4AAAAAAAAAADOh7T084T0/HBmlPhXXbL8UjGm+rbf1vQAAAAAAAAAAk2m6Pu/Jhj+U1ic/1JU+v5QbM74WH4M9AAAAAAAAAABagmA+EovYPkdFqz7iUpq/LBdSPo9eOT0AAAAAAAAAALPXvr2UaJE/6hEGPcmqP7+fgV2+gO1QvgAAAAAAAAAATfuHPSQibj5yVyE98zOYv6z9dT5ifKc9AAAAAAAAAACQJaY+EPM/P22PSz+NRk2/iB53vhHihDsAAAAAAAAAAGb7r73wW7A++pAYvqHtpb/AE/89Dy0CvgAAAAAAAAAAMaEcvzXvbj++kKi++VuVv9ZMmL8rg9++AAAAAAAAAADgmQQ+bMr0Pg7ngD6bJoy/3ISlvVufsb0AAAAAAAAAAICsNz1lWr0/0y5fPiRM7b00PJg8iiSPvQAAAAAAAAAATW4CPs9uRT3a0AU+Eg2Ev8c9Q7yAN4k7AAAAAAAAAABaeFk+yeaAP09IGj8SACq/L3D/vQY7cb0AAAAAAAAAAMZilj5CYt0+2s8vP3KSnr+7Hh++cBvSPQAAAAAAAAAAs8myvRbTsj9oxQS+S2wHv8ZEkLxeJCe+AAAAAAAAAABm89S95ralP2W/or5ziOq++nvnO4XO370AAAAAAAAAAA2K1j7EUR4/854ePwy9l79nspG+IAHGPQAAAAAAAAAALRwvvkClsT826lO/Q7R2vrnJLD610FA+AAAAAAAAAAAzx/M8llWrP8g6Oj5COKa+j7ysOrZ1nbwAAAAAAAAAABrMw713Tr0/qmuNvr/ZKL6gVJi8A+nuPQAAAAAAAAAAzQXjPMB7xT+djvk9mc6ZvORwtjxd4jI9AAAAAAAAAADNgHG8/wmwPzaU/r62DgO/WvVbPHFPmD0AAAAAAAAAAM31Ej11FK4/+jClPuqNib7X0aW98s5JvgAAAAAAAAAAYAE3vnmbyD9XsRu/Jl/SPRJLdj18asO6AAAAAAAAAAAKz8++ikAKP9wpHb9deoy/ThFZvQ7Rqr0AAAAAAAAAAABwn735LbI/Qvqrvlm2Rr6joF096M/9PAAAAAAAAAAApqqBPsgvsD8pczI/oavPvs2sib5+LGm+AAAAAAAAAADU0R2/X2NNPoQDB7+G14+/Gl1YvuA38L0AAAAAAAAAABpdZz18nrg/AZePPW6gzr5uRlA++qQ6PgAAAAAAAAAAjWSzvewhuj9FUp++pS8Mvq+lED2rv0I9AAAAAAAAAAAA1CM+1BhZP76ozT6bN4C/EDbXvMchELwAAAAAAAAAAGaeLL21HKc/GdYJvwKBKb/yaWU9wzYjPgAAAAAAAAAA2kxhvuhInz+Fmx++kHchv6TQcb4AVvu9AAAAAAAAAAAzDKK8KD+8vFy7rTskJ6C/Kx6WvT24pD4AAIA/AACAPwAN0r2J06k/YIJNv5cE2L7r8vo9eKp0PgAAAAAAAAAAwx7nPsfnWz/DMSU/40BNvzOe7D0SjWQ9AAAAAAAAAACt6n8+1225P2d6Gz9i3x6+r/BtPLiaQT0AAAAAAAAAADOvMb2fWBg/Jr8GvsPejb8zoXA9Wq27vQAAAAAAAAAAAFS1Prqjgj+7NbY+wyY+vwwH8j2r88I9AAAAAAAAAABmphu8enO2P9VVYb0atQG+wagCvU0G5L0AAAAAAAAAAOpAcr7zuQc/EL9tve/EcL+BvUC+tK1EPgAAAAAAAAAAupNLvqib5z5IbKW+rEegv+WGHj/QO5o+AAAAAAAAAABFuAy/pWxaPtKZ6L7sVKe/P8hNvnL7K74AAAAAAAAAAGb24b7+s6Y/BZIhv+EdEL+JSju+DPmdvgAAAAAAAAAA/owRv686Jb6Wj4e87ps5PAyVWT0iVBK8AACAPwAAAAA7BOO+XOwAPdMTMr9Asre/dfBWPlY2OD4AAAAAAAAAALMxqz0Jd5s/Tj2RPs3ZIr+JY+e9sRaZvQAAAAAAAAAA6semPiir0z4YyJo+vsqfv4GoGD5YPfA9AAAAAAAAAAAzMvM9/cd8P0J64z6gXlq/IdJ/PdrX2DsAAAAAAAAAAABYbL43KXQ/KuoZv7H+N7+JRyi8hV0ovgAAAAAAAAAAZjL7O3npuT+wSUY+91TdPv+rEryesje9AAAAAAAAAADjJxo/954SP0bllj/8UGm/3fYRv1P8o7sAAAAAAAAAAArZiT4Ggrk/e1T8PkA2/b53Sx29qOfMPQAAAAAAAAAAS50pvwbaMD8O5Ea/w2d6vwKXNr0alTG+AAAAAAAAAACaldC7Bs2vPzRSKb4fVdi+G242PDpQID0AAAAAAAAAAAAMkTvsP6Q/sZZBPSGI575GF6+9vPaEvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYk0ABEsIhpSMAUOUdJRSlC4="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVdAQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiTQAEhZSMAUOUdJRSlC4="
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.04857599999999995,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVHhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIJ4bkZOLHUcCUhpRSlIwBbJRLX4wBdJRHQJEuWYplSTB1fZQoaAZoCWgPQwjOT3EceHhZwJSGlFKUaBVLYWgWR0CRLlVvMr3CdX2UKGgGaAloD0MIA5ZcxeLgWsCUhpRSlGgVS2VoFkdAkTAV2mpEQXV9lChoBmgJaA9DCKeSAaCKWVfAlIaUUpRoFUtXaBZHQJEvwbBGhEl1fZQoaAZoCWgPQwiY3ZOHhS5jwJSGlFKUaBVLU2gWR0CRL7mkWRA9dX2UKGgGaAloD0MIwW9DjNdlaMCUhpRSlGgVS25oFkdAkS+oMjNY83V9lChoBmgJaA9DCJd1/1iI3FnAlIaUUpRoFUtiaBZHQJEvoGA08/51fZQoaAZoCWgPQwghdxGmqC9hwJSGlFKUaBVLYmgWR0CRL3T0QK8ddX2UKGgGaAloD0MIxJWzd0awZ8CUhpRSlGgVS1NoFkdAkS9j/6wdKnV9lChoBmgJaA9DCFjlQuVfWlTAlIaUUpRoFUtfaBZHQJEvVPFefI11fZQoaAZoCWgPQwiX/iWpzMphwJSGlFKUaBVLP2gWR0CRMRmTC+DfdX2UKGgGaAloD0MIrg0V4/zgUcCUhpRSlGgVS3hoFkdAkTEISYgJTnV9lChoBmgJaA9DCHtmSYCacVPAlIaUUpRoFUtFaBZHQJEw+puMuOF1fZQoaAZoCWgPQwgju9IyUglZwJSGlFKUaBVLPmgWR0CRMPC3PRiPdX2UKGgGaAloD0MIcM0d/S+VVcCUhpRSlGgVS3loFkdAkTDolUp/gHV9lChoBmgJaA9DCM138BMH4FnAlIaUUpRoFUteaBZHQJEw1dIGyHF1fZQoaAZoCWgPQwi4I5wWfC9xwJSGlFKUaBVLXGgWR0CRMM+PRzBAdX2UKGgGaAloD0MIDOpb5nTZT8CUhpRSlGgVS0poFkdAkTCkl3QlbHV9lChoBmgJaA9DCI2ZRL3gDFPAlIaUUpRoFUtEaBZHQJEwnFkxyn11fZQoaAZoCWgPQwjJIHcRpg5iwJSGlFKUaBVLU2gWR0CRMJclgMMJdX2UKGgGaAloD0MIZacf1EX6TMCUhpRSlGgVS0VoFkdAkTByIcinpHV9lChoBmgJaA9DCFdBDHTtAWDAlIaUUpRoFUtUaBZHQJEwbx9XtBx1fZQoaAZoCWgPQwiWd9UD5ktSwJSGlFKUaBVLTWgWR0CRME5N47iidX2UKGgGaAloD0MI2q1lMhzsXsCUhpRSlGgVS1xoFkdAkTIoJeE7GXV9lChoBmgJaA9DCF392CQ/bF7AlIaUUpRoFUuMaBZHQJEx6mgrYoR1fZQoaAZoCWgPQwiCqPsApGtUwJSGlFKUaBVLZGgWR0CRMeHOKO1fdX2UKGgGaAloD0MI7iO3Jt0AWcCUhpRSlGgVS1BoFkdAkTHdB4Uvf3V9lChoBmgJaA9DCNnqckrAZm/AlIaUUpRoFUt8aBZHQJEx3YukDZF1fZQoaAZoCWgPQwgsZK4MqsRowJSGlFKUaBVLZGgWR0CRMc2CuloEdX2UKGgGaAloD0MI7x6g+3K4UcCUhpRSlGgVS01oFkdAkTHBKDkELnV9lChoBmgJaA9DCHqnAu75wWzAlIaUUpRoFUtmaBZHQJExv7fpD/l1fZQoaAZoCWgPQwgpQX+hRxtXwJSGlFKUaBVLQWgWR0CRMa3WnTAndX2UKGgGaAloD0MIvwzGiEQyV8CUhpRSlGgVS2ZoFkdAkTGd8uzyBnV9lChoBmgJaA9DCO86G/LPsVzAlIaUUpRoFUtlaBZHQJExnQgLZzx1fZQoaAZoCWgPQwhzS6sh8RZrwJSGlFKUaBVLR2gWR0CRMZVrylN2dX2UKGgGaAloD0MIMq8jDtmEU8CUhpRSlGgVS0poFkdAkTMvb48EFHV9lChoBmgJaA9DCPzkKEAU+2DAlIaUUpRoFUtOaBZHQJEzLxWkrPN1fZQoaAZoCWgPQwht4uR+h1hYwJSGlFKUaBVLXWgWR0CRMxcjJMg2dX2UKGgGaAloD0MIHM2RlV/cXcCUhpRSlGgVS1BoFkdAkTMVPacqfHV9lChoBmgJaA9DCA5nfjUHZFzAlIaUUpRoFUtxaBZHQJEzDPE87p51fZQoaAZoCWgPQwguILQevshSwJSGlFKUaBVLUmgWR0CRMvl8gIQfdX2UKGgGaAloD0MIs+4fC9GsWMCUhpRSlGgVS1loFkdAkTLU9hZyMnV9lChoBmgJaA9DCGcrL/mf4VvAlIaUUpRoFUtjaBZHQJEyzhCMPz51fZQoaAZoCWgPQwiciH5t/cJPwJSGlFKUaBVLcWgWR0CRMs7aIvaldX2UKGgGaAloD0MI0HtjCAA7XcCUhpRSlGgVS4VoFkdAkTLMLfDUE3V9lChoBmgJaA9DCKjHtgw4blHAlIaUUpRoFUtVaBZHQJEyqPvKEFp1fZQoaAZoCWgPQwhauoJtxMZWwJSGlFKUaBVLUWgWR0CRMqit7rs0dX2UKGgGaAloD0MIk1URbjI6V8CUhpRSlGgVS2VoFkdAkTRZNbkfcXV9lChoBmgJaA9DCBPzrKQVLVrAlIaUUpRoFUtcaBZHQJE0RQGfPHF1fZQoaAZoCWgPQwhr9GqA0jVTwJSGlFKUaBVLS2gWR0CRNAnDBMzudX2UKGgGaAloD0MIPs3Ji4yscMCUhpRSlGgVS25oFkdAkTPz6BRQ8HV9lChoBmgJaA9DCINStHIvJVfAlIaUUpRoFUtvaBZHQJEz6r4nF5x1fZQoaAZoCWgPQwjsia4LP0tfwJSGlFKUaBVLV2gWR0CRM+O0svqUdX2UKGgGaAloD0MIUUoIVtUWU8CUhpRSlGgVS1doFkdAkTV/Wcz68HV9lChoBmgJaA9DCLzmVZ0VHHPAlIaUUpRoFUtkaBZHQJE1f+kxh2J1fZQoaAZoCWgPQwgUyy2thu5LwJSGlFKUaBVLcmgWR0CRNXMDwH7hdX2UKGgGaAloD0MI4PYEiW10acCUhpRSlGgVS05oFkdAkTVzjaPCEnV9lChoBmgJaA9DCGprRDAO5VjAlIaUUpRoFUtmaBZHQJE1YeHSF491fZQoaAZoCWgPQwieswWE1kxWwJSGlFKUaBVLYWgWR0CRNWBxPwd9dX2UKGgGaAloD0MINLkYA2sqYMCUhpRSlGgVS0VoFkdAkTVaQzUI9nV9lChoBmgJaA9DCOrQ6Xk3f1nAlIaUUpRoFUtRaBZHQJE1V+hGpdd1fZQoaAZoCWgPQwj6CtKMRdMPwJSGlFKUaBVLWWgWR0CRNTGu9vjwdX2UKGgGaAloD0MIDmsqi8Ipb8CUhpRSlGgVS0poFkdAkTUBdUsFuHV9lChoBmgJaA9DCP/r3LSZqm7AlIaUUpRoFUtoaBZHQJE03bpNbkh1fZQoaAZoCWgPQwguBDkoYb5bwJSGlFKUaBVLTmgWR0CRNNeUY8+zdX2UKGgGaAloD0MI9zx/2qjNWcCUhpRSlGgVS1RoFkdAkTS96HCXQnV9lChoBmgJaA9DCJvLDYY6OEPAlIaUUpRoFUt7aBZHQJE0vTNMXad1fZQoaAZoCWgPQwjMDBtl/b5YwJSGlFKUaBVLUWgWR0CRNqW9US7HdX2UKGgGaAloD0MIY+/FF210YsCUhpRSlGgVS0JoFkdAkTaTkhib2HV9lChoBmgJaA9DCCUDQBU3WmzAlIaUUpRoFUtyaBZHQJE2ixA0Kqp1fZQoaAZoCWgPQwiugEI9fZlRwJSGlFKUaBVLSGgWR0CRNoAjIJZ4dX2UKGgGaAloD0MIIenTKvo9YcCUhpRSlGgVS2JoFkdAkTZ01ZTya3V9lChoBmgJaA9DCFOWIY51rlzAlIaUUpRoFUthaBZHQJE2cyxiXpp1fZQoaAZoCWgPQwiAKJgxBYVPwJSGlFKUaBVLWGgWR0CRNjSB9TgmdX2UKGgGaAloD0MIsfuO4bEIZsCUhpRSlGgVS4loFkdAkTYQqAjIJnV9lChoBmgJaA9DCJgVinS/3WTAlIaUUpRoFUttaBZHQJE2C7SRbKR1fZQoaAZoCWgPQwhrniPyXZxPwJSGlFKUaBVLRmgWR0CRNfIz3yqddX2UKGgGaAloD0MIxHdi1osPU8CUhpRSlGgVS3JoFkdAkTfj6eoUBXV9lChoBmgJaA9DCOpCrP4Iu2jAlIaUUpRoFUtQaBZHQJE30y57PY51fZQoaAZoCWgPQwjRzf5Aub9UwJSGlFKUaBVLWGgWR0CRN9K7qY7adX2UKGgGaAloD0MIO+C6YkbKUMCUhpRSlGgVS2doFkdAkTfEz0pVj3V9lChoBmgJaA9DCDJ07KCSUGvAlIaUUpRoFUtmaBZHQJE3nvVmSQp1fZQoaAZoCWgPQwg8a7ddaC9UwJSGlFKUaBVLemgWR0CRN5XqZ+hHdX2UKGgGaAloD0MIUkMbgA3cR8CUhpRSlGgVS0toFkdAkTeQX2ugYnV9lChoBmgJaA9DCFg5tMh2Z1PAlIaUUpRoFUtraBZHQJE3kMjNY8x1fZQoaAZoCWgPQwjo2az6XPNiwJSGlFKUaBVLbmgWR0CRN5ChN/OMdX2UKGgGaAloD0MIOEnzx7SCXMCUhpRSlGgVS1VoFkdAkTd23nZCfHV9lChoBmgJaA9DCEYIjzaOPlfAlIaUUpRoFUtPaBZHQJE3Y8mrsB11fZQoaAZoCWgPQwj4VblQ+VxkwJSGlFKUaBVLYGgWR0CRN13lCCz1dX2UKGgGaAloD0MIl8RZETUfW8CUhpRSlGgVS1loFkdAkTdW74BV/HV9lChoBmgJaA9DCFXejnBa/lHAlIaUUpRoFUtmaBZHQJE3LRiPQv91fZQoaAZoCWgPQwi22sNeKN5KwJSGlFKUaBVLRGgWR0CRNyjpcHGCdX2UKGgGaAloD0MIApzexfs3YMCUhpRSlGgVS1ZoFkdAkTkLBO58SnV9lChoBmgJaA9DCPFHUWfusWbAlIaUUpRoFUtLaBZHQJE4+VII4VB1fZQoaAZoCWgPQwhDVrd6Th1VwJSGlFKUaBVLU2gWR0CROOkv9LpSdX2UKGgGaAloD0MIxeV4BaLJWMCUhpRSlGgVS1NoFkdAkTi4kVvddnV9lChoBmgJaA9DCMtneR7cW0hAlIaUUpRoFU3oA2gWR0CROKt0V8CxdX2UKGgGaAloD0MIrJFdaRnRTcCUhpRSlGgVS2BoFkdAkTihl18stnV9lChoBmgJaA9DCIo9tI+V9mHAlIaUUpRoFUt3aBZHQJE4lUedTYN1fZQoaAZoCWgPQwgJ+aBns8xYwJSGlFKUaBVLV2gWR0CROGNt65XmdWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 16,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.99,
|
82 |
+
"ent_coef": 0.02,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
"batch_size": 128,
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 84893
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3c1aa49ac9fc778783d5c7512fc3b5c156c1aa025e8b1a4592126264bc8dda75
|
3 |
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:597071cac589811e0e150df78f50f5a6586b3139e1e8c1b1fc2f9c1729305287
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba3bae5bd96f99a33745da32d827d8d625a66c4bf8d4db4301f797cc4907de23
|
3 |
+
size 240951
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": -133.8756309641176, "std_reward": 35.82154651344581, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T12:46:51.793940"}
|