Upload PPO LunarLander-v2 trained agent
Browse files- README.md +1 -1
- config.json +1 -1
- ppo-LunarLander-v2.zip +2 -2
- ppo-LunarLander-v2/data +23 -23
- ppo-LunarLander-v2/policy.optimizer.pth +2 -2
- ppo-LunarLander-v2/policy.pth +1 -1
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -10,7 +10,7 @@ model-index:
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
-
value:
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
|
|
10 |
results:
|
11 |
- metrics:
|
12 |
- type: mean_reward
|
13 |
+
value: 257.33 +/- 18.46
|
14 |
name: mean_reward
|
15 |
task:
|
16 |
type: reinforcement-learning
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd0565448c0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd056544950>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd0565449e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd056544a70>", "_build": "<function ActorCriticPolicy._build at 0x7fd056544b00>", "forward": "<function ActorCriticPolicy.forward at 0x7fd056544b90>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd056544c20>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd056544cb0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd056544d40>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd056544dd0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd056544e60>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd05650f780>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651706172.6160152, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAANqSlb3T6nM/NjGovV/GUb7vMhi8aCVdPQAAAAAAAAAAGu9qPVyXfboesIQ6c0Z1NqFV67rtH5i5AACAPwAAgD9Wi7s+g61LPaDZS7t5O6q5PQYvPuN/vzkAAIA/AACAP3s2y77tm0A+OvsjvoLcK74pVfC9E4poPQAAAAAAAAAAhoSnvsBTUD8qRja97vmhvpyss71vFMu9AAAAAAAAAACaIjI+6IGDvPpnoLmHwKI3lCDxvfjO0DgAAIA/AACAPxabfr6sgdA8FL4FO03bp7n/92m+fZo2ugAAgD8AAIA/yJKRvjSUpT7qV2C9GVyGvcz/szwV7NW9AAAAAAAAAAAmf529EvqhP2a5F752XKm+aoeSuUVhJD0AAAAAAAAAABqlpL0URKK6CyHauu3YrDYKX5661TX6OQAAgD8AAIA/ACMmvVr5rT/vkA6/Z5a2vhL2QD0USZo9AAAAAAAAAAAAnhI/0qSYPCfRLLp0dYg44OSKPa5qmjkAAIA/AACAP3NPTb61lsc+K2jHvEbPML6fQAo9zhGaPAAAAAAAAAAAkx54vvn/gD4QTXG7R6dGvgyNyT1m9sC6AAAAAAAAAABmb5E+zeA2PlK38bvDlyK+jWpVPC7ahrwAAAAAAAAAALMVg745zDI++YIZvsBlFL50QPg8YrMJvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVfhAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIjQqcbANFWECUhpRSlIwBbJRN6AOMAXSUR0CGPiK1og3cdX2UKGgGaAloD0MIgsgiTbxWWECUhpRSlGgVTegDaBZHQIZIdnCfpUx1fZQoaAZoCWgPQwh5rBkZ5FFgQJSGlFKUaBVN6ANoFkdAhkzSN4qwyXV9lChoBmgJaA9DCOAu+3Wnf2BAlIaUUpRoFU3oA2gWR0CGTQJGe+VUdX2UKGgGaAloD0MIDTSfc7fHV0CUhpRSlGgVTegDaBZHQIZXYt4A0bd1fZQoaAZoCWgPQwiOBBps6rVhQJSGlFKUaBVN6ANoFkdAhlhQuVX3g3V9lChoBmgJaA9DCEmERrBxqTXAlIaUUpRoFU0uAWgWR0CGZ5IClrM1dX2UKGgGaAloD0MIFOl+TkFlYUCUhpRSlGgVTegDaBZHQIZwE8eS0Sh1fZQoaAZoCWgPQwj5ghYSMKIuwJSGlFKUaBVL8GgWR0CGe4NZvDP4dX2UKGgGaAloD0MIzJpY4CsSX0CUhpRSlGgVTegDaBZHQIaVmGIsRQJ1fZQoaAZoCWgPQwiP4hx1dNNaQJSGlFKUaBVN6ANoFkdAhqxhOP/7znV9lChoBmgJaA9DCOviNhrAQFhAlIaUUpRoFU3oA2gWR0CGt2oegctHdX2UKGgGaAloD0MIZW6+Ed2TQUCUhpRSlGgVTegDaBZHQIbB/BciW3V1fZQoaAZoCWgPQwj1vBsLCvlOQJSGlFKUaBVN6ANoFkdAhsOddmg8KXV9lChoBmgJaA9DCEzGMZI9aFtAlIaUUpRoFU3oA2gWR0CGxOFdszl+dX2UKGgGaAloD0MImRJJ9DIoTECUhpRSlGgVTegDaBZHQIcYmTs6aLJ1fZQoaAZoCWgPQwgtIorJG7ZbQJSGlFKUaBVN6ANoFkdAhxjRUWEbpHV9lChoBmgJaA9DCNNQo5Bk0VZAlIaUUpRoFU3oA2gWR0CHJ4c1fmcOdX2UKGgGaAloD0MIvQFmvoMMYECUhpRSlGgVTegDaBZHQIczkxj8UEh1fZQoaAZoCWgPQwjZB1kWTI5cQJSGlFKUaBVN6ANoFkdAhzivkJa7mXV9lChoBmgJaA9DCJQT7SqkSlpAlIaUUpRoFU3oA2gWR0CHOOXD3ueCdX2UKGgGaAloD0MI/nxbsFSHS8CUhpRSlGgVTYYBaBZHQIdDQla8pTd1fZQoaAZoCWgPQwgpP6n26QhaQJSGlFKUaBVN6ANoFkdAh0X6fSQYDXV9lChoBmgJaA9DCE33OqkvAVNAlIaUUpRoFU3oA2gWR0CHVvschkiEdX2UKGgGaAloD0MIL96P2y+NRcCUhpRSlGgVTUsBaBZHQIdeunQ6ZIB1fZQoaAZoCWgPQwg/AKlNnNZQQJSGlFKUaBVN6ANoFkdAh1+F6zE74nV9lChoBmgJaA9DCCtrm+LxVmTAlIaUUpRoFU0tAWgWR0CHZ/OoHcDbdX2UKGgGaAloD0MI34sv2uNrUECUhpRSlGgVTegDaBZHQIdp8psoDxN1fZQoaAZoCWgPQwhXJ2co7mgfQJSGlFKUaBVNMgFoFkdAh3RxwhnrZHV9lChoBmgJaA9DCO87hsd+JVRAlIaUUpRoFU3oA2gWR0CHfoQ2/BWQdX2UKGgGaAloD0MIwCDp0ypdaMCUhpRSlGgVTe8BaBZHQIeO9GgBcRl1fZQoaAZoCWgPQwh7vfvjvYonQJSGlFKUaBVN6ANoFkdAh4/49Pk7wXV9lChoBmgJaA9DCBpSRfEqXlRAlIaUUpRoFU3oA2gWR0CHmCjFAE+xdX2UKGgGaAloD0MILquwGWCTYUCUhpRSlGgVTegDaBZHQIegDundfsx1fZQoaAZoCWgPQwhtyD8ziONNwJSGlFKUaBVNbAFoFkdAh6ITFMqSYHV9lChoBmgJaA9DCHh6pSxDV1ZAlIaUUpRoFU3oA2gWR0CHonWBBiTddX2UKGgGaAloD0MIlzldFhMxXUCUhpRSlGgVTegDaBZHQIfuX58BuGd1fZQoaAZoCWgPQwh/FkuRfEdGQJSGlFKUaBVN6ANoFkdAh+6PW6K+BnV9lChoBmgJaA9DCMiyYOKPkFJAlIaUUpRoFU3oA2gWR0CIBhzwtrbhdX2UKGgGaAloD0MIuTZUjPOeX0CUhpRSlGgVTegDaBZHQIgLAMrmQsB1fZQoaAZoCWgPQwicqKW5FdIQQJSGlFKUaBVNTwFoFkdAiA2/dIoVmHV9lChoBmgJaA9DCPBt+rMfkFVAlIaUUpRoFU3oA2gWR0CILXO0LMLXdX2UKGgGaAloD0MIh6jCn+HXXUCUhpRSlGgVTegDaBZHQIg2wjIJZ4h1fZQoaAZoCWgPQwiCb5o+O75fQJSGlFKUaBVN6ANoFkdAiDeuwosqa3V9lChoBmgJaA9DCGo0uRgDhVlAlIaUUpRoFU3oA2gWR0CIQl+8XenAdX2UKGgGaAloD0MIRUjdzr56IsCUhpRSlGgVTT4BaBZHQIhFQrFwT/R1fZQoaAZoCWgPQwgy5xn7kgtUQJSGlFKUaBVN6ANoFkdAiFHmpEQXh3V9lChoBmgJaA9DCH/AAwMIzVhAlIaUUpRoFU3oA2gWR0CIXmntv4ucdX2UKGgGaAloD0MI8+UF2EflSkCUhpRSlGgVTegDaBZHQIhxbT2FnI11fZQoaAZoCWgPQwi9/bloyIRIQJSGlFKUaBVN6ANoFkdAiHKHscABDHV9lChoBmgJaA9DCE8DBkmfKENAlIaUUpRoFU3oA2gWR0CIe3wVj7Q+dX2UKGgGaAloD0MIo5BkVu9wBUCUhpRSlGgVTS8BaBZHQIh8JnDiwSt1fZQoaAZoCWgPQwgjhEcbR7FhQJSGlFKUaBVNtgFoFkdAiH3HaFmFrXV9lChoBmgJaA9DCDl7Z7RV1ltAlIaUUpRoFU3oA2gWR0CIg7F1jiGWdX2UKGgGaAloD0MIuwuUFFgdXUCUhpRSlGgVTegDaBZHQIiFlSXMQmN1fZQoaAZoCWgPQwgQA137AmpXQJSGlFKUaBVN6ANoFkdAiJ2yU1Q663V9lChoBmgJaA9DCDqWd9UDDFxAlIaUUpRoFU3oA2gWR0CIneLy+YdAdX2UKGgGaAloD0MIycnErYKiWkCUhpRSlGgVTegDaBZHQIjsaiVSn+B1fZQoaAZoCWgPQwjnjCjtDfdYQJSGlFKUaBVN6ANoFkdAiPQc0tRNy3V9lChoBmgJaA9DCFlrKLUX30nAlIaUUpRoFU0JAWgWR0CJAjSeAd4ndX2UKGgGaAloD0MIuOhkqfVuI8CUhpRSlGgVTRYBaBZHQIkEqlYU34t1fZQoaAZoCWgPQwiUhETaxohXQJSGlFKUaBVN6ANoFkdAiRyhESdvsXV9lChoBmgJaA9DCGABTBk4o11AlIaUUpRoFU3oA2gWR0CJHZQpF1B/dX2UKGgGaAloD0MIZhTLLa0uVkCUhpRSlGgVTegDaBZHQIkm0JSiudR1fZQoaAZoCWgPQwiOrz2zJDhAwJSGlFKUaBVNWAFoFkdAiSlA75mAb3V9lChoBmgJaA9DCK63zVSIvzjAlIaUUpRoFU1JAWgWR0CJLYhDgIhRdX2UKGgGaAloD0MI9N4YAoDGWECUhpRSlGgVTegDaBZHQIk0cHjZL7J1fZQoaAZoCWgPQwj6QzNPrhEsQJSGlFKUaBVNaAFoFkdAiT9YN7SiNHV9lChoBmgJaA9DCGy0HOihx1lAlIaUUpRoFU3oA2gWR0CJP03H7xd6dX2UKGgGaAloD0MIZtgo6zcXNECUhpRSlGgVTRgBaBZHQIlKlfkWAPN1fZQoaAZoCWgPQwiYaJCCp7NWQJSGlFKUaBVN6ANoFkdAiU/sz2vjfnV9lChoBmgJaA9DCOBnXDiQ6GBAlIaUUpRoFU3oA2gWR0CJUOF8G9pRdX2UKGgGaAloD0MI0opvKHy8XUCUhpRSlGgVTegDaBZHQIlYHT5O8Ch1fZQoaAZoCWgPQwgHX5hMFQZSQJSGlFKUaBVN6ANoFkdAiVisnAqNInV9lChoBmgJaA9DCML6P4f55lhAlIaUUpRoFU3oA2gWR0CJWfXWe6I4dX2UKGgGaAloD0MInfS+8bUFSsCUhpRSlGgVS/RoFkdAiVoaqKgqVnV9lChoBmgJaA9DCDL/6Js09l9AlIaUUpRoFU3oA2gWR0CJXiX7cfvGdX2UKGgGaAloD0MIho4dVOICVkCUhpRSlGgVTegDaBZHQIlfeXXyy2R1fZQoaAZoCWgPQwhvLZPheFRMwJSGlFKUaBVNAAFoFkdAiWK9hAnlXHV9lChoBmgJaA9DCPN1Gf5TLmPAlIaUUpRoFU3GAWgWR0CJzmZssQNDdX2UKGgGaAloD0MI14nL8Qp2WkCUhpRSlGgVTegDaBZHQInVzaoMrmR1fZQoaAZoCWgPQwgUCaaa2TBhQJSGlFKUaBVN6ANoFkdAie6/bblA/3V9lChoBmgJaA9DCJ0rSgnBe1ZAlIaUUpRoFU3oA2gWR0CJ+kKuSwGGdX2UKGgGaAloD0MIahZod0itQ0CUhpRSlGgVTegDaBZHQIn9BXGOuJV1fZQoaAZoCWgPQwjEQq1p3vVdQJSGlFKUaBVN6ANoFkdAigIPV/c32nV9lChoBmgJaA9DCJvKorCLwVtAlIaUUpRoFU3oA2gWR0CKFaYDTz/ZdX2UKGgGaAloD0MIUTI5tTODV0CUhpRSlGgVTegDaBZHQIojHu/k/8l1fZQoaAZoCWgPQwhVFK+ytuhYQJSGlFKUaBVN6ANoFkdAiimnpjc2znV9lChoBmgJaA9DCDikUYGTLVVAlIaUUpRoFU3oA2gWR0CKKtkPMB6sdX2UKGgGaAloD0MIj6uRXWmDWECUhpRSlGgVTegDaBZHQIo0IYUFjd51fZQoaAZoCWgPQwi8kuS5vmNUQJSGlFKUaBVN6ANoFkdAijWvGyX2NHV9lChoBmgJaA9DCKEt51JcYFtAlIaUUpRoFU3oA2gWR0CKNdxmTTvzdX2UKGgGaAloD0MI4e1BCMj/V0CUhpRSlGgVTegDaBZHQIo6eObRWtF1fZQoaAZoCWgPQwgD6s2o+cVXQJSGlFKUaBVN6ANoFkdAijwDEm6XjXV9lChoBmgJaA9DCJ9Yp8p38mNAlIaUUpRoFU1nAmgWR0CKPNcGkep5dX2UKGgGaAloD0MI5nYv98nCX0CUhpRSlGgVTegDaBZHQIo/W4gA6uJ1fZQoaAZoCWgPQwgKuVLPgtA2wJSGlFKUaBVL5WgWR0CKSEUJv5xjdX2UKGgGaAloD0MIiLzl6sc+SMCUhpRSlGgVTSwBaBZHQIpL0upS75F1fZQoaAZoCWgPQwgq4nSSLcxiQJSGlFKUaBVNIQJoFkdAik4yf+S8rnV9lChoBmgJaA9DCMHG9e/6XCxAlIaUUpRoFU0RAWgWR0CKU/e2uxKQdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a7d175f80>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a7d17d050>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a7d17d0e0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a7d17d170>", "_build": "<function ActorCriticPolicy._build at 0x7f3a7d17d200>", "forward": "<function ActorCriticPolicy.forward at 0x7f3a7d17d290>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a7d17d320>", "_predict": "<function ActorCriticPolicy._predict at 0x7f3a7d17d3b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a7d17d440>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a7d17d4d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a7d17d560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f3a7d1bdc90>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 96, "num_timesteps": 2064384, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651748333.0761514, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAADNzGrpIS5y6oj2dO2anqLWk97s6UrO1ugAAgD8AAIA/AKR1PKjzqT2dEd697UNzvg/4PL0yA3k6AAAAAAAAAABmHiE79nR2utIvjLvXilc2zeOMukNGybUAAIA/AACAP5osGT32AAO6CJNzuzLo6rbTdiK70NOMOgAAgD8AAIA/GnsnPtuXdj/gHSQ+/x6vvnC1FD7iHIK9AAAAAAAAAAAzFV++I0LWPmAXrT6C3HO+bNOEPOYXTD0AAAAAAAAAAM20Fbtcayu6vT9ouayNurTGmQE6NkqFOAAAgD8AAIA/M0J3vaxO4jwFASQ+7jKWvRLxhjtWACU+AAAAAAAAAADN+SU9jwJounJtFbv8YNS1ASgiuw7fLDoAAIA/AACAP01xNb1cD2+67sYrumbB1jOCqxq76h1DOQAAgD8AAIA/zW8vPddDKblKt567qW3SNsmcurtVob06AACAPwAAgD+ae0s9AgweP0vy0r1Gxke+FMyXPIBop7wAAAAAAAAAAGZbQD24ttG5zc7DuhxbgrW7rEk7w3DnOQAAgD8AAIA/s1MhPa5bgrr7ZYi7ZCQ0NnopH7sTQJ06AACAPwAAgD/N/m49MWLHPTUcsz2Am3W+aV+LPQ7xR70AAAAAAAAAAL07gL47A2g/uMyKvbs/mL4fnE2+xhmcPQAAAAAAAAAAYANjPgaZFD9uQ/y94C1rvqKvVj3mlAg8AAAAAAAAAADNzEg5CgciuSsLgrx9fqK7KneiOu8MMj0AAIA/AAAAAM3NzzwUgIe6nVaOOWY1PrOX8WK6CZSiuAAAgD8AAIA/zQCIu8MlebolwjY775iHNZXn+zoGcFC6AACAPwAAgD+aFMW84LFHP9jHa7zNCGC+axIxvSj/gjwAAAAAAAAAAGZwfrxc2xK60uIdPBWr0jTqcz65k6HdMwAAgD8AAIA/MzVuvc2ZPj97geE8HUmSvl+vwr3P0cY9AAAAAAAAAABmAos8XNN0ugY0BryX7m20vtN7Oo1p+DMAAIA/AACAP2bIGz32/Da6A6GwOn4lrjzi1re5vkeWPQAAgD8AAIA/ltZvvo8zjT+v06++sCWpvnmaeL6+/Im9AAAAAAAAAADN8Mo8dBuzP1hvAD4Vzoi+PCkVPWacTT0AAAAAAAAAAJp+bb0UDIO6q7+DPGO7MbaS01g7BQcetQAAgD8AAIA/GoMWvSlQIbpXJKA6ZCSotao/PjrmKbu5AACAPwAAgD9Njae9cV1tue4HSjwKMKs11u8lu33IqDQAAIA/AACAP43Wgb2F65A4K+zNupIhKzYpx9w7m7j1OQAAgD8AAIA/5l12Pfb0Wbro6Vu6M2xVtp3blrprLng5AACAPwAAgD8AYse891sOP5EzybzXq32+qxVdO8U35roAAAAAAAAAAG1hBj661Yg/6ScZPi2O174k9Qg+Biq1PAAAAAAAAAAAzRxSPbimgblz8j28H5FzNru+qbvaPeC1AACAPwAAgD8AI808UpiEuTwzi7rLLd+1qP1nO4dspTkAAIA/AACAP7PfRj1cy2S6QJZEOs7707Xtv8E6PqNjuQAAgD8AAIA/AG3PPEPpsz+pWB8/E9LLvfgyjbxa2dG8AAAAAAAAAAAzIa08KRA9uqXrfTlajf61Hf6Ku8qJ9rQAAIA/AACAP2YkL7y4VsW5LhnoumtfTrVt9tS6fswKOgAAgD8AAIA/ZlgMvMNxYLoCBx074N9cuallwjo6nSy6AACAPwAAgD8AWd28e0SAuhQyCLyjgMI2qWUouzO/LLYAAIA/AACAP2aRojz23Ee6PnqKOx4zaje95b66nt1VNgAAgD8AAIA/TfYjvT3qcrmeaNs6d6voNXHrujvOqAC6AACAPwAAgD+Np4w9jw5Buqb8izuGdNo25MmiOTyGn7oAAIA/AACAP80MBLzDLXq6djwqu4THL7bI5wa7IC1DOgAAgD8AAIA/M881vXtulbpRJQU6hEpUNbiT0Doq9i00AACAPwAAgD8Aoi08XOs+umZXe7szG9g3WNWuOym2LDoAAIA/AACAP2YXyzz27BC6wy3FOiHKybV+JEq7tuzTtAAAgD8AAIA/BrsNvuomNj6Tk7k9T7lNvqPi8rwrOfA7AAAAAAAAAADmb189hQPGuQdeS7vgNHa29Lo5utIFajoAAIA/AACAPzP9QzyEZnw/qqQyPYZ8or4tc4S9CixVPAAAAAAAAAAAmmdLPaQEPzoSjaY68gchNiqyAjoCqMu5AACAPwAAgD8zIlW94T7TupA/krziBx29hscWO6JdCT4AAIA/AAAAAM0VUL32UEa6EEbOO2sC+jfOCg+7I4QrNgAAgD8AAIA/5kVDvr9hUj9aTRw88PhdviSir73SIYU8AAAAAAAAAACalsu8KShGuoSPF7o+cEu1WTGQugIYLjkAAIA/AACAPxpC6736T+Y+2UszPjQ3e743+0G8MAtVPQAAAAAAAAAAANjIPFz3fbqDW1a5kxQZOfanMDtOiTI4AACAPwAAgD+AIxO9sJyqP/bTmr6Sc9e+4IGhu0OVkr0AAAAAAAAAANoRoz1SoMq5jZhzO/LnW7k72Is7WsVAugAAgD8AAIA/8y4jvjNNUD/eyzS+JjOLvj9Qqr2zp6u9AAAAAAAAAACzZho99rxSunJUNzqWYo02+mypur3NVrkAAIA/AACAP57Kyb5wwnw/WBXKOkMssL4I5ba+obE/PgAAAAAAAAAAmgQ8va45krr6wH45M1RIM7E7g7qLppG4AACAPwAAgD8zhFQ9j6o1up4eH7y00pk5/YL8OjCDDLkAAIA/AACAP5rwOD0pIEu6+BJlOofy/bUZ4pS6HvGCuQAAgD8AAIA/E2Q2vtspubw4aVi8+40Fu27vIz6I6dE7AACAPwAAgD+afig9KVh/upIiVDnewHmzb/2ZuoOjcrgAAIA/AACAP+a9Lz3hXIW6+4eqt7zyMzZWglm6Wz2ctQAAgD8AAIA/AFq8PTqjhj++XA4+zYqpvtuA2z2agJ89AAAAAAAAAABaFp49ZKCbPywiqD7WF6m+fYilPcoIyj0AAAAAAAAAAGYc4jx7ZIe6aD/kOr+TOTZ4Mzg7W4oCugAAgD8AAIA/AAh7Pc6oqT1Is3U+jCpIvmQcqz0GIRC9AAAAAAAAAACa5t+87MnOufJI2DmDihw2YeGZOn8OFDUAAIA/AACAPzO7CzzhGI26H8mUui8aUDiQyJK7zhg0OQAAgD8AAIA/GlzPvY+OXboDIYy68JQWtgM0gDq1gaE5AACAPwAAgD8AEAu9dgQovPI48btJ2TU8cKucPSJ+G70AAIA/AACAP5oAozx7jsy6fhuHvPQzIb2piZg5Km8YPQAAgD8AAIA/ZptZPkqs1j4lE5K+UX2fvp/Nu72MtYy7AAAAAAAAAAAAD0A9H32MuQRSLLlVvJu0VkXHO6boSjgAAIA/AACAPwAoAjyPwgW4JE+LPDKpqjzAhJ47fbwbPAAAgD8AAIA/TaNPPeESirqWtAA7Yvv8NQ0bFzvvdxK6AACAPwAAgD/TM04+8weLPx3xVz5Pt7O+yS6gPr9rO7sAAAAAAAAAAHavhj7v/64/6RkgP5qDyb7JLqA+mkxUPgAAAAAAAAAAZuTPPIXL+Dh6TKs64dIuPB+VgTqD0hi9AACAPwAAAABmJjc9jxZyuhUQRDombHA1l00dupt5ZLkAAIA/AACAP80uzzwfPa65ukgPvFKgFTb7aaM6eOWHtQAAgD8AAIA/K1KHvu1Kmz8Am6C+3HvOvruui75FpYa8AAAAAAAAAAAAcJ870pvZu+7KljyjiL88jn8uPTJrn70AAIA/AACAP3Md0D3hILK6g/9ou6FXjTfHSQE6bm8qOgAAgD8AAIA/zcwiOUhXh7qXzsM7o9WSN+41pjpgeMA1AACAPwAAgD+aO0W9KYQRuhum/zpd7kw1GhcRuyDDQDQAAIA/AACAP80M3Trh+t24wQVDupr3GzbLF7g77tRpOQAAgD8AAIA/WhXaPd9ObD6lOSa+ebpCvicNZLx676o8AAAAAAAAAABmOam8j3J2ulLpj7sFESk3JDwFO+KuZjoAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLYEsIhpSMAUOUdJRSlC4="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWV0wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLYIWUjAFDlHSUUpQu"}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.032192, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYAX4bnM0ZECUhpRSlIwBbJRN6AOMAXSUR0CkxMnmig01dX2UKGgGaAloD0MIaLEUyVeBZECUhpRSlGgVTegDaBZHQKTE782rGR51fZQoaAZoCWgPQwguVP61vI1gQJSGlFKUaBVN6ANoFkdApMajuWrwOXV9lChoBmgJaA9DCJLPK5764GBAlIaUUpRoFU3oA2gWR0CkyAFPi1iOdX2UKGgGaAloD0MIH7+36c+VYkCUhpRSlGgVTegDaBZHQKTKZd4Vym11fZQoaAZoCWgPQwhvSQ7YVWVhQJSGlFKUaBVN6ANoFkdApMsBpUPxx3V9lChoBmgJaA9DCIDY0qOpAmVAlIaUUpRoFU3oA2gWR0CkzJYvvjOtdX2UKGgGaAloD0MI0qkrn+V5ZUCUhpRSlGgVTegDaBZHQKTNC2OyVwB1fZQoaAZoCWgPQwirtMU1PvRhQJSGlFKUaBVN6ANoFkdApM4jRtxdZHV9lChoBmgJaA9DCHY4ukr3d2JAlIaUUpRoFU3oA2gWR0Ck0Bd8qnWKdX2UKGgGaAloD0MIAhHiytkSY0CUhpRSlGgVTegDaBZHQKTQIWgvlEJ1fZQoaAZoCWgPQwh5ILJIk3lhQJSGlFKUaBVN6ANoFkdApNJy1JDmbXV9lChoBmgJaA9DCNMVbCOevWFAlIaUUpRoFU3oA2gWR0Ck1YLGaQV9dX2UKGgGaAloD0MIt2CpLmC+YUCUhpRSlGgVTegDaBZHQKTXl6Q/5cl1fZQoaAZoCWgPQwjYLJeNzqFiQJSGlFKUaBVN6ANoFkdApN6zcAR02nV9lChoBmgJaA9DCLZoAdpW3FdAlIaUUpRoFU3oA2gWR0Ck3ubHyVfNdX2UKGgGaAloD0MI6WLTSiFEYkCUhpRSlGgVTegDaBZHQKTibi0fHPx1fZQoaAZoCWgPQwjsTQzJSddhQJSGlFKUaBVN6ANoFkdApOTU+mm+CnV9lChoBmgJaA9DCL4tWKoLL2VAlIaUUpRoFU3oA2gWR0Ck6cihew9rdX2UKGgGaAloD0MIxjGSPcJ2YECUhpRSlGgVTegDaBZHQKTrNZfUnXx1fZQoaAZoCWgPQwi0Oc5twudiQJSGlFKUaBVN6ANoFkdApO1Ae7tiQXV9lChoBmgJaA9DCNKm6h5ZOmFAlIaUUpRoFU3oA2gWR0Ck737JnxrjdX2UKGgGaAloD0MIccYwJ+gkY0CUhpRSlGgVTegDaBZHQKTxLdN34bl1fZQoaAZoCWgPQwhxHHi13DddQJSGlFKUaBVN6ANoFkdApPM183Mpw3V9lChoBmgJaA9DCGH+Cpkrl2NAlIaUUpRoFU3oA2gWR0Ck95XOObRXdX2UKGgGaAloD0MIZK2h1N7TZECUhpRSlGgVTegDaBZHQKT4MdZJTVF1fZQoaAZoCWgPQwiH+l3YGutiQJSGlFKUaBVN6ANoFkdApPqwr4Fia3V9lChoBmgJaA9DCH3Qs1n16GVAlIaUUpRoFU3oA2gWR0Ck/gZ26kIpdX2UKGgGaAloD0MI+Uz2z1OxZUCUhpRSlGgVTegDaBZHQKT+Q76pHZt1fZQoaAZoCWgPQwgawjHLHm1jQJSGlFKUaBVN6ANoFkdApQQO0E5hjXV9lChoBmgJaA9DCNBHGXGBcmdAlIaUUpRoFU3oA2gWR0ClCYtihFmWdX2UKGgGaAloD0MIAaQ2cXIuWUCUhpRSlGgVTegDaBZHQKUMd8v24/h1fZQoaAZoCWgPQwiGAraDkTpnQJSGlFKUaBVN6ANoFkdApQzfoq0+knV9lChoBmgJaA9DCCOHiJtTe2RAlIaUUpRoFU3oA2gWR0ClDX7jT8YRdX2UKGgGaAloD0MIRUjdzr6dW0CUhpRSlGgVTegDaBZHQKUNhNXYDkl1fZQoaAZoCWgPQwhkJHuEmgllQJSGlFKUaBVN6ANoFkdApRAviaRZEHV9lChoBmgJaA9DCLow0ovas15AlIaUUpRoFU3oA2gWR0ClEbMolUqAdX2UKGgGaAloD0MIYAK37mYGZECUhpRSlGgVTegDaBZHQKUX0/8l5W11fZQoaAZoCWgPQwi1T8djBp9lQJSGlFKUaBVN6ANoFkdApRkcO09hZ3V9lChoBmgJaA9DCJm5wOWxTF9AlIaUUpRoFU3oA2gWR0ClGo8ZLqUvdX2UKGgGaAloD0MIcSGP4EbLXUCUhpRSlGgVTegDaBZHQKUky5fdAPd1fZQoaAZoCWgPQwgSF4BGaYZiQJSGlFKUaBVN6ANoFkdApSYdOj7AL3V9lChoBmgJaA9DCJj6eVMRLGBAlIaUUpRoFU3oA2gWR0ClJ517hNucdX2UKGgGaAloD0MIw7rx7khxZECUhpRSlGgVTegDaBZHQKUoEFB6a9d1fZQoaAZoCWgPQwiG/3QDBddaQJSGlFKUaBVN6ANoFkdApSjlBnjABXV9lChoBmgJaA9DCJ0q3zMSa1xAlIaUUpRoFU3oA2gWR0ClKUPX9R77dX2UKGgGaAloD0MImfIhqBpOZECUhpRSlGgVTegDaBZHQKUtMkleF+N1fZQoaAZoCWgPQwjAXfbrzvlhQJSGlFKUaBVN6ANoFkdApS4WU2UB4nV9lChoBmgJaA9DCDUnLzIBh2JAlIaUUpRoFU3oA2gWR0ClLiOXeFcqdX2UKGgGaAloD0MIL00R4HRRYECUhpRSlGgVTegDaBZHQKUxm1k1/Dt1fZQoaAZoCWgPQwgPJzCd1hZkQJSGlFKUaBVN6ANoFkdApTGnrnkkr3V9lChoBmgJaA9DCKgBg6TPZmBAlIaUUpRoFU3oA2gWR0ClN7q0tyxSdX2UKGgGaAloD0MINlfNc0QSY0CUhpRSlGgVTegDaBZHQKU4KrDqGDd1fZQoaAZoCWgPQwgJpS+EnExhQJSGlFKUaBVN6ANoFkdApTn2VX3g1nV9lChoBmgJaA9DCMWtghhoSWRAlIaUUpRoFU3oA2gWR0ClQZ8vmHQAdX2UKGgGaAloD0MI3e7lPjmpYECUhpRSlGgVTegDaBZHQKVEkf0VafV1fZQoaAZoCWgPQwhcH9YbNTNgQJSGlFKUaBVN6ANoFkdApUYeAf+0gXV9lChoBmgJaA9DCNHOaRboLWNAlIaUUpRoFU3oA2gWR0ClRkQxN7BwdX2UKGgGaAloD0MI7dYyGQ7JZUCUhpRSlGgVTegDaBZHQKVH9wVj7Q91fZQoaAZoCWgPQwhM32sIjgxiQJSGlFKUaBVN6ANoFkdApUgtDIBBA3V9lChoBmgJaA9DCFrxDYVP+WJAlIaUUpRoFU3oA2gWR0ClSMeeWfK7dX2UKGgGaAloD0MIn3O366XVZUCUhpRSlGgVTegDaBZHQKVKQbo8p1B1fZQoaAZoCWgPQwhLPQtCeSVkQJSGlFKUaBVN6ANoFkdApVKhZOi35XV9lChoBmgJaA9DCEVGByRhFGJAlIaUUpRoFU3oA2gWR0ClVZbu2JBPdX2UKGgGaAloD0MITuyhfSynZECUhpRSlGgVTegDaBZHQKVaLCLMs6J1fZQoaAZoCWgPQwh9XvHUo7hgQJSGlFKUaBVN6ANoFkdApV1gSHuZ1HV9lChoBmgJaA9DCKOQZFbvjWBAlIaUUpRoFU3oA2gWR0ClYIh/ZuhsdX2UKGgGaAloD0MIVtgMcME1YUCUhpRSlGgVTegDaBZHQKVg8wMYuTR1fZQoaAZoCWgPQwhS0y6mmT5kQJSGlFKUaBVN6ANoFkdApWH3w1BMSXV9lChoBmgJaA9DCKxSeqaXXGBAlIaUUpRoFU3oA2gWR0ClZTXBxgiNdX2UKGgGaAloD0MIT7LV5ZRYYkCUhpRSlGgVTegDaBZHQKVl3cfNiYt1fZQoaAZoCWgPQwhoklhSbr5lQJSGlFKUaBVN6ANoFkdApWhSHRCx/3V9lChoBmgJaA9DCBCTcCGPDmJAlIaUUpRoFU3oA2gWR0ClajM72cridX2UKGgGaAloD0MIzTrj+2LyZUCUhpRSlGgVTegDaBZHQKVrf5nDiwV1fZQoaAZoCWgPQwj6CPzh5/dlQJSGlFKUaBVN6ANoFkdApW8bMcIZ63V9lChoBmgJaA9DCM7drpem3mBAlIaUUpRoFU3oA2gWR0ClcW8Pe54GdX2UKGgGaAloD0MIhVypZ0F2ZkCUhpRSlGgVTegDaBZHQKV13ZDArQR1fZQoaAZoCWgPQwgsYthhTLRjQJSGlFKUaBVN6ANoFkdApXlNOCXhO3V9lChoBmgJaA9DCJvmHafoZlhAlIaUUpRoFU3oA2gWR0CleypDmbLEdX2UKGgGaAloD0MIe4ZwzLJ6Z0CUhpRSlGgVTegDaBZHQKV84CTUy591fZQoaAZoCWgPQwixU6waBClgQJSGlFKUaBVN6ANoFkdApX2/CdjG1nV9lChoBmgJaA9DCMvW+iKhSmFAlIaUUpRoFU3oA2gWR0ClfwamXPZ7dX2UKGgGaAloD0MIaAjHLPt6Y0CUhpRSlGgVTegDaBZHQKWGXcvduYR1fZQoaAZoCWgPQwgtCVBTS9NlQJSGlFKUaBVN6ANoFkdApYZpfYzzmXV9lChoBmgJaA9DCF5HHLKBcmFAlIaUUpRoFU3oA2gWR0Clh38zQ/ordX2UKGgGaAloD0MII93PKUjoZUCUhpRSlGgVTegDaBZHQKWI8mReTmp1fZQoaAZoCWgPQwiUZ14Ou/teQJSGlFKUaBVN6ANoFkdApYrdTFVDKHV9lChoBmgJaA9DCAzmr5C5iWNAlIaUUpRoFU3oA2gWR0Clix7OVxCIdX2UKGgGaAloD0MIu+1Cc50pX0CUhpRSlGgVTegDaBZHQKWLkQQL/jt1fZQoaAZoCWgPQwiasz7lmFJcQJSGlFKUaBVN6ANoFkdApYwASnLq2XV9lChoBmgJaA9DCA9fJoqQ9mFAlIaUUpRoFU3oA2gWR0CljO6y0KJEdX2UKGgGaAloD0MI8nfvqLG3Y0CUhpRSlGgVTegDaBZHQKWNM6xPfsN1fZQoaAZoCWgPQwiga19Ar1tlQJSGlFKUaBVN6ANoFkdApY33Hggow3V9lChoBmgJaA9DCGufjscMk2NAlIaUUpRoFU3oA2gWR0CljfqGtZFHdX2UKGgGaAloD0MI24toOyZ5YUCUhpRSlGgVTegDaBZHQKWOCMLncL11fZQoaAZoCWgPQwgEPdS2Ya5kQJSGlFKUaBVN6ANoFkdApZA8u6ErXnV9lChoBmgJaA9DCGt9kdAW/GFAlIaUUpRoFU3oA2gWR0Clk59Jrcj8dX2UKGgGaAloD0MIKII4DycPXECUhpRSlGgVTegDaBZHQKWTyQQtjCp1fZQoaAZoCWgPQwj36uOh73dbQJSGlFKUaBVN6ANoFkdApZVsB+4LC3V9lChoBmgJaA9DCPDAAMKHpWNAlIaUUpRoFU3oA2gWR0CllsLOAy2ydWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 168, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 8, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fc6597bfce092822c4469a00165f9232809d65f45e585bbd879e776386607ff5
|
3 |
+
size 147619
|
ppo-LunarLander-v2/data
CHANGED
@@ -4,19 +4,19 @@
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function ActorCriticPolicy.__init__ at
|
8 |
-
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at
|
9 |
-
"reset_noise": "<function ActorCriticPolicy.reset_noise at
|
10 |
-
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at
|
11 |
-
"_build": "<function ActorCriticPolicy._build at
|
12 |
-
"forward": "<function ActorCriticPolicy.forward at
|
13 |
-
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at
|
14 |
-
"_predict": "<function ActorCriticPolicy._predict at
|
15 |
-
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at
|
16 |
-
"get_distribution": "<function ActorCriticPolicy.get_distribution at
|
17 |
-
"predict_values": "<function ActorCriticPolicy.predict_values at
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
-
"_abc_impl": "<_abc_data object at
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
@@ -41,13 +41,13 @@
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
-
"n_envs":
|
45 |
-
"num_timesteps":
|
46 |
-
"_total_timesteps":
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
-
"start_time":
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
@@ -56,34 +56,34 @@
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
-
":serialized:": "
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
-
":serialized:": "
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
-
"_current_progress_remaining": -0.
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
-
":serialized:": "
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
-
"_n_updates":
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
-
"batch_size":
|
86 |
-
"n_epochs":
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
|
|
4 |
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f3a7d175f80>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f3a7d17d050>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f3a7d17d0e0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f3a7d17d170>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f3a7d17d200>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f3a7d17d290>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f3a7d17d320>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f3a7d17d3b0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f3a7d17d440>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f3a7d17d4d0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f3a7d17d560>",
|
18 |
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f3a7d1bdc90>"
|
20 |
},
|
21 |
"verbose": 1,
|
22 |
"policy_kwargs": {},
|
|
|
41 |
"dtype": "int64",
|
42 |
"_np_random": null
|
43 |
},
|
44 |
+
"n_envs": 96,
|
45 |
+
"num_timesteps": 2064384,
|
46 |
+
"_total_timesteps": 2000000,
|
47 |
"_num_timesteps_at_start": 0,
|
48 |
"seed": null,
|
49 |
"action_noise": null,
|
50 |
+
"start_time": 1651748333.0761514,
|
51 |
"learning_rate": 0.0003,
|
52 |
"tensorboard_log": null,
|
53 |
"lr_schedule": {
|
|
|
56 |
},
|
57 |
"_last_obs": {
|
58 |
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQwAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYADAAAAAAAADNzGrpIS5y6oj2dO2anqLWk97s6UrO1ugAAgD8AAIA/AKR1PKjzqT2dEd697UNzvg/4PL0yA3k6AAAAAAAAAABmHiE79nR2utIvjLvXilc2zeOMukNGybUAAIA/AACAP5osGT32AAO6CJNzuzLo6rbTdiK70NOMOgAAgD8AAIA/GnsnPtuXdj/gHSQ+/x6vvnC1FD7iHIK9AAAAAAAAAAAzFV++I0LWPmAXrT6C3HO+bNOEPOYXTD0AAAAAAAAAAM20Fbtcayu6vT9ouayNurTGmQE6NkqFOAAAgD8AAIA/M0J3vaxO4jwFASQ+7jKWvRLxhjtWACU+AAAAAAAAAADN+SU9jwJounJtFbv8YNS1ASgiuw7fLDoAAIA/AACAP01xNb1cD2+67sYrumbB1jOCqxq76h1DOQAAgD8AAIA/zW8vPddDKblKt567qW3SNsmcurtVob06AACAPwAAgD+ae0s9AgweP0vy0r1Gxke+FMyXPIBop7wAAAAAAAAAAGZbQD24ttG5zc7DuhxbgrW7rEk7w3DnOQAAgD8AAIA/s1MhPa5bgrr7ZYi7ZCQ0NnopH7sTQJ06AACAPwAAgD/N/m49MWLHPTUcsz2Am3W+aV+LPQ7xR70AAAAAAAAAAL07gL47A2g/uMyKvbs/mL4fnE2+xhmcPQAAAAAAAAAAYANjPgaZFD9uQ/y94C1rvqKvVj3mlAg8AAAAAAAAAADNzEg5CgciuSsLgrx9fqK7KneiOu8MMj0AAIA/AAAAAM3NzzwUgIe6nVaOOWY1PrOX8WK6CZSiuAAAgD8AAIA/zQCIu8MlebolwjY775iHNZXn+zoGcFC6AACAPwAAgD+aFMW84LFHP9jHa7zNCGC+axIxvSj/gjwAAAAAAAAAAGZwfrxc2xK60uIdPBWr0jTqcz65k6HdMwAAgD8AAIA/MzVuvc2ZPj97geE8HUmSvl+vwr3P0cY9AAAAAAAAAABmAos8XNN0ugY0BryX7m20vtN7Oo1p+DMAAIA/AACAP2bIGz32/Da6A6GwOn4lrjzi1re5vkeWPQAAgD8AAIA/ltZvvo8zjT+v06++sCWpvnmaeL6+/Im9AAAAAAAAAADN8Mo8dBuzP1hvAD4Vzoi+PCkVPWacTT0AAAAAAAAAAJp+bb0UDIO6q7+DPGO7MbaS01g7BQcetQAAgD8AAIA/GoMWvSlQIbpXJKA6ZCSotao/PjrmKbu5AACAPwAAgD9Njae9cV1tue4HSjwKMKs11u8lu33IqDQAAIA/AACAP43Wgb2F65A4K+zNupIhKzYpx9w7m7j1OQAAgD8AAIA/5l12Pfb0Wbro6Vu6M2xVtp3blrprLng5AACAPwAAgD8AYse891sOP5EzybzXq32+qxVdO8U35roAAAAAAAAAAG1hBj661Yg/6ScZPi2O174k9Qg+Biq1PAAAAAAAAAAAzRxSPbimgblz8j28H5FzNru+qbvaPeC1AACAPwAAgD8AI808UpiEuTwzi7rLLd+1qP1nO4dspTkAAIA/AACAP7PfRj1cy2S6QJZEOs7707Xtv8E6PqNjuQAAgD8AAIA/AG3PPEPpsz+pWB8/E9LLvfgyjbxa2dG8AAAAAAAAAAAzIa08KRA9uqXrfTlajf61Hf6Ku8qJ9rQAAIA/AACAP2YkL7y4VsW5LhnoumtfTrVt9tS6fswKOgAAgD8AAIA/ZlgMvMNxYLoCBx074N9cuallwjo6nSy6AACAPwAAgD8AWd28e0SAuhQyCLyjgMI2qWUouzO/LLYAAIA/AACAP2aRojz23Ee6PnqKOx4zaje95b66nt1VNgAAgD8AAIA/TfYjvT3qcrmeaNs6d6voNXHrujvOqAC6AACAPwAAgD+Np4w9jw5Buqb8izuGdNo25MmiOTyGn7oAAIA/AACAP80MBLzDLXq6djwqu4THL7bI5wa7IC1DOgAAgD8AAIA/M881vXtulbpRJQU6hEpUNbiT0Doq9i00AACAPwAAgD8Aoi08XOs+umZXe7szG9g3WNWuOym2LDoAAIA/AACAP2YXyzz27BC6wy3FOiHKybV+JEq7tuzTtAAAgD8AAIA/BrsNvuomNj6Tk7k9T7lNvqPi8rwrOfA7AAAAAAAAAADmb189hQPGuQdeS7vgNHa29Lo5utIFajoAAIA/AACAPzP9QzyEZnw/qqQyPYZ8or4tc4S9CixVPAAAAAAAAAAAmmdLPaQEPzoSjaY68gchNiqyAjoCqMu5AACAPwAAgD8zIlW94T7TupA/krziBx29hscWO6JdCT4AAIA/AAAAAM0VUL32UEa6EEbOO2sC+jfOCg+7I4QrNgAAgD8AAIA/5kVDvr9hUj9aTRw88PhdviSir73SIYU8AAAAAAAAAACalsu8KShGuoSPF7o+cEu1WTGQugIYLjkAAIA/AACAPxpC6736T+Y+2UszPjQ3e743+0G8MAtVPQAAAAAAAAAAANjIPFz3fbqDW1a5kxQZOfanMDtOiTI4AACAPwAAgD+AIxO9sJyqP/bTmr6Sc9e+4IGhu0OVkr0AAAAAAAAAANoRoz1SoMq5jZhzO/LnW7k72Is7WsVAugAAgD8AAIA/8y4jvjNNUD/eyzS+JjOLvj9Qqr2zp6u9AAAAAAAAAACzZho99rxSunJUNzqWYo02+mypur3NVrkAAIA/AACAP57Kyb5wwnw/WBXKOkMssL4I5ba+obE/PgAAAAAAAAAAmgQ8va45krr6wH45M1RIM7E7g7qLppG4AACAPwAAgD8zhFQ9j6o1up4eH7y00pk5/YL8OjCDDLkAAIA/AACAP5rwOD0pIEu6+BJlOofy/bUZ4pS6HvGCuQAAgD8AAIA/E2Q2vtspubw4aVi8+40Fu27vIz6I6dE7AACAPwAAgD+afig9KVh/upIiVDnewHmzb/2ZuoOjcrgAAIA/AACAP+a9Lz3hXIW6+4eqt7zyMzZWglm6Wz2ctQAAgD8AAIA/AFq8PTqjhj++XA4+zYqpvtuA2z2agJ89AAAAAAAAAABaFp49ZKCbPywiqD7WF6m+fYilPcoIyj0AAAAAAAAAAGYc4jx7ZIe6aD/kOr+TOTZ4Mzg7W4oCugAAgD8AAIA/AAh7Pc6oqT1Is3U+jCpIvmQcqz0GIRC9AAAAAAAAAACa5t+87MnOufJI2DmDihw2YeGZOn8OFDUAAIA/AACAPzO7CzzhGI26H8mUui8aUDiQyJK7zhg0OQAAgD8AAIA/GlzPvY+OXboDIYy68JQWtgM0gDq1gaE5AACAPwAAgD8AEAu9dgQovPI48btJ2TU8cKucPSJ+G70AAIA/AACAP5oAozx7jsy6fhuHvPQzIb2piZg5Km8YPQAAgD8AAIA/ZptZPkqs1j4lE5K+UX2fvp/Nu72MtYy7AAAAAAAAAAAAD0A9H32MuQRSLLlVvJu0VkXHO6boSjgAAIA/AACAPwAoAjyPwgW4JE+LPDKpqjzAhJ47fbwbPAAAgD8AAIA/TaNPPeESirqWtAA7Yvv8NQ0bFzvvdxK6AACAPwAAgD/TM04+8weLPx3xVz5Pt7O+yS6gPr9rO7sAAAAAAAAAAHavhj7v/64/6RkgP5qDyb7JLqA+mkxUPgAAAAAAAAAAZuTPPIXL+Dh6TKs64dIuPB+VgTqD0hi9AACAPwAAAABmJjc9jxZyuhUQRDombHA1l00dupt5ZLkAAIA/AACAP80uzzwfPa65ukgPvFKgFTb7aaM6eOWHtQAAgD8AAIA/K1KHvu1Kmz8Am6C+3HvOvruui75FpYa8AAAAAAAAAAAAcJ870pvZu+7KljyjiL88jn8uPTJrn70AAIA/AACAP3Md0D3hILK6g/9ou6FXjTfHSQE6bm8qOgAAgD8AAIA/zcwiOUhXh7qXzsM7o9WSN+41pjpgeMA1AACAPwAAgD+aO0W9KYQRuhum/zpd7kw1GhcRuyDDQDQAAIA/AACAP80M3Trh+t24wQVDupr3GzbLF7g77tRpOQAAgD8AAIA/WhXaPd9ObD6lOSa+ebpCvicNZLx676o8AAAAAAAAAABmOam8j3J2ulLpj7sFESk3JDwFO+KuZjoAAIA/AACAP5SMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLYEsIhpSMAUOUdJRSlC4="
|
60 |
},
|
61 |
"_last_episode_starts": {
|
62 |
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWV0wAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJZgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLYIWUjAFDlHSUUpQu"
|
64 |
},
|
65 |
"_last_original_obs": null,
|
66 |
"_episode_num": 0,
|
67 |
"use_sde": false,
|
68 |
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.032192,
|
70 |
"ep_info_buffer": {
|
71 |
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYAX4bnM0ZECUhpRSlIwBbJRN6AOMAXSUR0CkxMnmig01dX2UKGgGaAloD0MIaLEUyVeBZECUhpRSlGgVTegDaBZHQKTE782rGR51fZQoaAZoCWgPQwguVP61vI1gQJSGlFKUaBVN6ANoFkdApMajuWrwOXV9lChoBmgJaA9DCJLPK5764GBAlIaUUpRoFU3oA2gWR0CkyAFPi1iOdX2UKGgGaAloD0MIH7+36c+VYkCUhpRSlGgVTegDaBZHQKTKZd4Vym11fZQoaAZoCWgPQwhvSQ7YVWVhQJSGlFKUaBVN6ANoFkdApMsBpUPxx3V9lChoBmgJaA9DCIDY0qOpAmVAlIaUUpRoFU3oA2gWR0CkzJYvvjOtdX2UKGgGaAloD0MI0qkrn+V5ZUCUhpRSlGgVTegDaBZHQKTNC2OyVwB1fZQoaAZoCWgPQwirtMU1PvRhQJSGlFKUaBVN6ANoFkdApM4jRtxdZHV9lChoBmgJaA9DCHY4ukr3d2JAlIaUUpRoFU3oA2gWR0Ck0Bd8qnWKdX2UKGgGaAloD0MIAhHiytkSY0CUhpRSlGgVTegDaBZHQKTQIWgvlEJ1fZQoaAZoCWgPQwh5ILJIk3lhQJSGlFKUaBVN6ANoFkdApNJy1JDmbXV9lChoBmgJaA9DCNMVbCOevWFAlIaUUpRoFU3oA2gWR0Ck1YLGaQV9dX2UKGgGaAloD0MIt2CpLmC+YUCUhpRSlGgVTegDaBZHQKTXl6Q/5cl1fZQoaAZoCWgPQwjYLJeNzqFiQJSGlFKUaBVN6ANoFkdApN6zcAR02nV9lChoBmgJaA9DCLZoAdpW3FdAlIaUUpRoFU3oA2gWR0Ck3ubHyVfNdX2UKGgGaAloD0MI6WLTSiFEYkCUhpRSlGgVTegDaBZHQKTibi0fHPx1fZQoaAZoCWgPQwjsTQzJSddhQJSGlFKUaBVN6ANoFkdApOTU+mm+CnV9lChoBmgJaA9DCL4tWKoLL2VAlIaUUpRoFU3oA2gWR0Ck6cihew9rdX2UKGgGaAloD0MIxjGSPcJ2YECUhpRSlGgVTegDaBZHQKTrNZfUnXx1fZQoaAZoCWgPQwi0Oc5twudiQJSGlFKUaBVN6ANoFkdApO1Ae7tiQXV9lChoBmgJaA9DCNKm6h5ZOmFAlIaUUpRoFU3oA2gWR0Ck737JnxrjdX2UKGgGaAloD0MIccYwJ+gkY0CUhpRSlGgVTegDaBZHQKTxLdN34bl1fZQoaAZoCWgPQwhxHHi13DddQJSGlFKUaBVN6ANoFkdApPM183Mpw3V9lChoBmgJaA9DCGH+Cpkrl2NAlIaUUpRoFU3oA2gWR0Ck95XOObRXdX2UKGgGaAloD0MIZK2h1N7TZECUhpRSlGgVTegDaBZHQKT4MdZJTVF1fZQoaAZoCWgPQwiH+l3YGutiQJSGlFKUaBVN6ANoFkdApPqwr4Fia3V9lChoBmgJaA9DCH3Qs1n16GVAlIaUUpRoFU3oA2gWR0Ck/gZ26kIpdX2UKGgGaAloD0MI+Uz2z1OxZUCUhpRSlGgVTegDaBZHQKT+Q76pHZt1fZQoaAZoCWgPQwgawjHLHm1jQJSGlFKUaBVN6ANoFkdApQQO0E5hjXV9lChoBmgJaA9DCNBHGXGBcmdAlIaUUpRoFU3oA2gWR0ClCYtihFmWdX2UKGgGaAloD0MIAaQ2cXIuWUCUhpRSlGgVTegDaBZHQKUMd8v24/h1fZQoaAZoCWgPQwiGAraDkTpnQJSGlFKUaBVN6ANoFkdApQzfoq0+knV9lChoBmgJaA9DCCOHiJtTe2RAlIaUUpRoFU3oA2gWR0ClDX7jT8YRdX2UKGgGaAloD0MIRUjdzr6dW0CUhpRSlGgVTegDaBZHQKUNhNXYDkl1fZQoaAZoCWgPQwhkJHuEmgllQJSGlFKUaBVN6ANoFkdApRAviaRZEHV9lChoBmgJaA9DCLow0ovas15AlIaUUpRoFU3oA2gWR0ClEbMolUqAdX2UKGgGaAloD0MIYAK37mYGZECUhpRSlGgVTegDaBZHQKUX0/8l5W11fZQoaAZoCWgPQwi1T8djBp9lQJSGlFKUaBVN6ANoFkdApRkcO09hZ3V9lChoBmgJaA9DCJm5wOWxTF9AlIaUUpRoFU3oA2gWR0ClGo8ZLqUvdX2UKGgGaAloD0MIcSGP4EbLXUCUhpRSlGgVTegDaBZHQKUky5fdAPd1fZQoaAZoCWgPQwgSF4BGaYZiQJSGlFKUaBVN6ANoFkdApSYdOj7AL3V9lChoBmgJaA9DCJj6eVMRLGBAlIaUUpRoFU3oA2gWR0ClJ517hNucdX2UKGgGaAloD0MIw7rx7khxZECUhpRSlGgVTegDaBZHQKUoEFB6a9d1fZQoaAZoCWgPQwiG/3QDBddaQJSGlFKUaBVN6ANoFkdApSjlBnjABXV9lChoBmgJaA9DCJ0q3zMSa1xAlIaUUpRoFU3oA2gWR0ClKUPX9R77dX2UKGgGaAloD0MImfIhqBpOZECUhpRSlGgVTegDaBZHQKUtMkleF+N1fZQoaAZoCWgPQwjAXfbrzvlhQJSGlFKUaBVN6ANoFkdApS4WU2UB4nV9lChoBmgJaA9DCDUnLzIBh2JAlIaUUpRoFU3oA2gWR0ClLiOXeFcqdX2UKGgGaAloD0MIL00R4HRRYECUhpRSlGgVTegDaBZHQKUxm1k1/Dt1fZQoaAZoCWgPQwgPJzCd1hZkQJSGlFKUaBVN6ANoFkdApTGnrnkkr3V9lChoBmgJaA9DCKgBg6TPZmBAlIaUUpRoFU3oA2gWR0ClN7q0tyxSdX2UKGgGaAloD0MINlfNc0QSY0CUhpRSlGgVTegDaBZHQKU4KrDqGDd1fZQoaAZoCWgPQwgJpS+EnExhQJSGlFKUaBVN6ANoFkdApTn2VX3g1nV9lChoBmgJaA9DCMWtghhoSWRAlIaUUpRoFU3oA2gWR0ClQZ8vmHQAdX2UKGgGaAloD0MI3e7lPjmpYECUhpRSlGgVTegDaBZHQKVEkf0VafV1fZQoaAZoCWgPQwhcH9YbNTNgQJSGlFKUaBVN6ANoFkdApUYeAf+0gXV9lChoBmgJaA9DCNHOaRboLWNAlIaUUpRoFU3oA2gWR0ClRkQxN7BwdX2UKGgGaAloD0MI7dYyGQ7JZUCUhpRSlGgVTegDaBZHQKVH9wVj7Q91fZQoaAZoCWgPQwhM32sIjgxiQJSGlFKUaBVN6ANoFkdApUgtDIBBA3V9lChoBmgJaA9DCFrxDYVP+WJAlIaUUpRoFU3oA2gWR0ClSMeeWfK7dX2UKGgGaAloD0MIn3O366XVZUCUhpRSlGgVTegDaBZHQKVKQbo8p1B1fZQoaAZoCWgPQwhLPQtCeSVkQJSGlFKUaBVN6ANoFkdApVKhZOi35XV9lChoBmgJaA9DCEVGByRhFGJAlIaUUpRoFU3oA2gWR0ClVZbu2JBPdX2UKGgGaAloD0MITuyhfSynZECUhpRSlGgVTegDaBZHQKVaLCLMs6J1fZQoaAZoCWgPQwh9XvHUo7hgQJSGlFKUaBVN6ANoFkdApV1gSHuZ1HV9lChoBmgJaA9DCKOQZFbvjWBAlIaUUpRoFU3oA2gWR0ClYIh/ZuhsdX2UKGgGaAloD0MIVtgMcME1YUCUhpRSlGgVTegDaBZHQKVg8wMYuTR1fZQoaAZoCWgPQwhS0y6mmT5kQJSGlFKUaBVN6ANoFkdApWH3w1BMSXV9lChoBmgJaA9DCKxSeqaXXGBAlIaUUpRoFU3oA2gWR0ClZTXBxgiNdX2UKGgGaAloD0MIT7LV5ZRYYkCUhpRSlGgVTegDaBZHQKVl3cfNiYt1fZQoaAZoCWgPQwhoklhSbr5lQJSGlFKUaBVN6ANoFkdApWhSHRCx/3V9lChoBmgJaA9DCBCTcCGPDmJAlIaUUpRoFU3oA2gWR0ClajM72cridX2UKGgGaAloD0MIzTrj+2LyZUCUhpRSlGgVTegDaBZHQKVrf5nDiwV1fZQoaAZoCWgPQwj6CPzh5/dlQJSGlFKUaBVN6ANoFkdApW8bMcIZ63V9lChoBmgJaA9DCM7drpem3mBAlIaUUpRoFU3oA2gWR0ClcW8Pe54GdX2UKGgGaAloD0MIhVypZ0F2ZkCUhpRSlGgVTegDaBZHQKV13ZDArQR1fZQoaAZoCWgPQwgsYthhTLRjQJSGlFKUaBVN6ANoFkdApXlNOCXhO3V9lChoBmgJaA9DCJvmHafoZlhAlIaUUpRoFU3oA2gWR0CleypDmbLEdX2UKGgGaAloD0MIe4ZwzLJ6Z0CUhpRSlGgVTegDaBZHQKV84CTUy591fZQoaAZoCWgPQwixU6waBClgQJSGlFKUaBVN6ANoFkdApX2/CdjG1nV9lChoBmgJaA9DCMvW+iKhSmFAlIaUUpRoFU3oA2gWR0ClfwamXPZ7dX2UKGgGaAloD0MIaAjHLPt6Y0CUhpRSlGgVTegDaBZHQKWGXcvduYR1fZQoaAZoCWgPQwgtCVBTS9NlQJSGlFKUaBVN6ANoFkdApYZpfYzzmXV9lChoBmgJaA9DCF5HHLKBcmFAlIaUUpRoFU3oA2gWR0Clh38zQ/ordX2UKGgGaAloD0MII93PKUjoZUCUhpRSlGgVTegDaBZHQKWI8mReTmp1fZQoaAZoCWgPQwiUZ14Ou/teQJSGlFKUaBVN6ANoFkdApYrdTFVDKHV9lChoBmgJaA9DCAzmr5C5iWNAlIaUUpRoFU3oA2gWR0Clix7OVxCIdX2UKGgGaAloD0MIu+1Cc50pX0CUhpRSlGgVTegDaBZHQKWLkQQL/jt1fZQoaAZoCWgPQwiasz7lmFJcQJSGlFKUaBVN6ANoFkdApYwASnLq2XV9lChoBmgJaA9DCA9fJoqQ9mFAlIaUUpRoFU3oA2gWR0CljO6y0KJEdX2UKGgGaAloD0MI8nfvqLG3Y0CUhpRSlGgVTegDaBZHQKWNM6xPfsN1fZQoaAZoCWgPQwiga19Ar1tlQJSGlFKUaBVN6ANoFkdApY33Hggow3V9lChoBmgJaA9DCGufjscMk2NAlIaUUpRoFU3oA2gWR0CljfqGtZFHdX2UKGgGaAloD0MI24toOyZ5YUCUhpRSlGgVTegDaBZHQKWOCMLncL11fZQoaAZoCWgPQwgEPdS2Ya5kQJSGlFKUaBVN6ANoFkdApZA8u6ErXnV9lChoBmgJaA9DCGt9kdAW/GFAlIaUUpRoFU3oA2gWR0Clk59Jrcj8dX2UKGgGaAloD0MIKII4DycPXECUhpRSlGgVTegDaBZHQKWTyQQtjCp1fZQoaAZoCWgPQwj36uOh73dbQJSGlFKUaBVN6ANoFkdApZVsB+4LC3V9lChoBmgJaA9DCPDAAMKHpWNAlIaUUpRoFU3oA2gWR0CllsLOAy2ydWUu"
|
73 |
},
|
74 |
"ep_success_buffer": {
|
75 |
":type:": "<class 'collections.deque'>",
|
76 |
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
},
|
78 |
+
"_n_updates": 168,
|
79 |
"n_steps": 1024,
|
80 |
"gamma": 0.999,
|
81 |
"gae_lambda": 0.98,
|
82 |
"ent_coef": 0.01,
|
83 |
"vf_coef": 0.5,
|
84 |
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 128,
|
86 |
+
"n_epochs": 8,
|
87 |
"clip_range": {
|
88 |
":type:": "<class 'function'>",
|
89 |
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
ppo-LunarLander-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f32352bbb3c4ac10319af3c28ac7715d8dbdd0bfd73f7886eb3284213493479
|
3 |
+
size 84893
|
ppo-LunarLander-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 43201
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f75f894236d3d30de68f57d99b76af4d16b49a8da443619e94c466790576a0e4
|
3 |
size 43201
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13c751d4737bfea43c43b02bb6988b01d1ca2fd89ce583c78c0a138a59f47ca6
|
3 |
+
size 198043
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 257.33171343403217, "std_reward": 18.45844221055684, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-05T11:57:04.503911"}
|