Marvin
Initial commit
8f02e9b unverified
|
raw
history blame
10.3 kB
metadata
language:
  - de
tags:
  - question-generation
  - german
  - text2text-generation
  - generated_from_trainer
datasets:
  - lmqg/qg_dequad
metrics:
  - bleu4
  - f1
  - rouge
  - exact_match
model-index:
  - name: german-jeopardy-mt5-large
    results:
      - task:
          name: Sequence-to-sequence Language Modeling
          type: text2text-generation
        dataset:
          name: lmqg/qg_dequad
          type: default
          args: default
        metrics:
          - name: BLEU-4
            type: bleu4
            value: 15.09
          - name: F1
            type: f1
            value: 40.69
          - name: ROUGE-1
            type: rouge1
            value: 41.68
          - name: ROUGE-2
            type: rouge2
            value: 22.07
          - name: ROUGE-L
            type: rougel
            value: 40.2
          - name: ROUGE-Lsum
            type: rougelsum
            value: 40.19
          - name: Exact Match
            type: exact_match
            value: 2.77

german-jeopardy-mt5-large-1k-64-constant

This model is a fine-tuned version of google/mt5-large on the lmqg/qg_dequad dataset. It achieves the following results on the evaluation set:

  • Loss: 1.8162
  • Brevity Penalty: 0.9152
  • System Length: 19102
  • Reference Length: 20793
  • ROUGE-1: 41.68
  • ROUGE-2: 22.07
  • ROUGE-L: 40.20
  • ROUGE-Lsum: 40.19
  • Exact Match: 2.77
  • BLEU: 15.09
  • F1: 40.69

Model description

See google/mt5-large for the model architecture.
The model was trained on a single NVIDIA RTX 3090 GPU with 24GB of VRAM.

Intended uses & limitations

This model can be used for question generation on German text.

Training and evaluation data

See lmqg/qg_dequad.

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 7
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adafactor
  • lr_scheduler_type: constant
  • num_epochs: 20

Training results

Training Loss Epoch Step BLEU Brevity Penalty Counts 1 Counts 2 Counts 3 Counts 4 Exact Match F1 Mean Generated Length Validation Loss Precisions 1 Precisions 2 Precisions 3 Precisions 4 Reference Length ROUGE-1 ROUGE-2 ROUGE-L ROUGE-Lsum System Length Totals 1 Totals 2 Totals 3 Totals 4
2.732 1.0 145 12.4473 0.7805 7779 2893 1393 685 0.0168 0.3393 12.2523 1.2989 45.6809 19.5143 11.0372 6.5758 21250 0.3487 0.1796 0.3329 0.3327 17029 17029 14825 12621 10417
1.5514 2.0 291 14.7663 0.7871 8297 3336 1711 899 0.025 0.3743 12.441 1.2100 48.3931 22.3278 13.4333 8.5351 21250 0.3839 0.2089 0.3688 0.369 17145 17145 14941 12737 10533
1.3546 3.0 435 1.1428 8930 3713 1905 1022 17018 14814 12610 10406 52.4739 25.0641 15.1071 9.8213 0.7798 17018 21250 0.4225 0.2345 0.4075 0.4074 0.034 16.3903 12.6021 0.4155
1.1969 4.0 581 1.1113 9456 3994 2096 1157 18171 15967 13763 11559 52.039 25.0141 15.2292 10.0095 0.8441 18171 21250 0.4409 0.246 0.4251 0.4251 0.0386 17.8161 13.4061 0.4334
1.0876 5.0 726 1.1032 9606 4162 2233 1243 18179 15975 13771 11567 52.8412 26.0532 16.2152 10.7461 0.8446 18179 21250 0.4504 0.2571 0.4356 0.4357 0.0377 18.6911 13.5599 0.443
0.9881 6.0 872 1.1119 9608 4167 2235 1246 18245 16041 13837 11633 52.661 25.9772 16.1523 10.7109 0.8481 18245 21250 0.4505 0.2567 0.4348 0.4349 0.044 18.7071 13.6978 0.4429
0.9142 7.0 1017 1.1106 9757 4285 2311 1310 18291 16087 13883 11679 53.3432 26.6364 16.6463 11.2167 0.8506 18291 21250 0.4587 0.2641 0.4427 0.443 0.0495 19.3053 13.5826 0.451
0.8323 8.0 1163 1.1327 9757 4300 2341 1317 18293 16089 13885 11681 53.3373 26.7263 16.8599 11.2747 0.8507 18293 21250 0.4587 0.2662 0.4429 0.4426 0.0472 19.4102 13.6239 0.4513
0.7742 9.0 1308 1.1574 9757 4273 2324 1320 18273 16069 13865 11661 53.3957 26.5916 16.7616 11.3198 0.8497 18273 21250 0.4585 0.2653 0.4431 0.443 0.049 19.3574 13.5944 0.451
0.7101 10.0 1454 1.1674 9861 4403 2438 1416 18641 16437 14233 12029 52.8995 26.7871 17.1292 11.7716 0.8694 18641 21250 0.4594 0.2689 0.444 0.4435 0.0531 20.1003 13.9133 0.4525
0.6642 10.99 1599 1.1889 9868 4380 2358 1337 18386 16182 13978 11774 53.6713 27.0671 16.8694 11.3555 0.8558 18386 21250 0.4622 0.2694 0.4469 0.4466 0.0476 19.655 13.9142 0.4551
0.6067 12.0 1745 1.2207 9872 4384 2408 1395 18894 16690 14486 12282 52.2494 26.2672 16.6229 11.3581 0.8828 18894 21250 0.4569 0.2667 0.441 0.4408 0.0472 19.9169 14.2482 0.4489
0.5684 12.99 1890 1.2587 9870 4356 2360 1329 18901 16697 14493 12289 52.2195 26.0885 16.2837 10.8145 0.8831 18901 21250 0.4581 0.2651 0.4414 0.4409 0.0485 19.5451 14.2432 0.4506
0.5288 14.0 2036 1.2804 9815 4360 2389 1335 18367 16163 13959 11755 53.4382 26.9752 17.1144 11.3569 0.8547 18367 21250 0.4592 0.2671 0.4443 0.4436 0.0454 19.6648 13.7432 0.4504
0.4902 14.99 2181 1.3211 9886 4407 2398 1359 18777 16573 14369 12165 52.6495 26.5914 16.6887 11.1714 0.8766 18777 21250 0.4582 0.2674 0.4426 0.4421 0.0495 19.8138 14.1225 0.451
0.4498 16.0 2327 1.3621 10008 4477 2456 1381 19399 17195 14991 12787 51.5903 26.0366 16.3832 10.8 0.909 19399 21250 0.4569 0.2679 0.4415 0.4412 0.0476 20.0703 14.3725 0.4491
0.4216 16.99 2472 1.3967 10016 4483 2455 1385 19125 16921 14717 12513 52.3712 26.4937 16.6814 11.0685 0.8948 19125 21250 0.4615 0.2705 0.4457 0.4451 0.0481 20.1319 14.3008 0.4531
0.3829 18.0 2618 1.4460 9976 4407 2412 1374 19464 17260 15056 12852 51.2536 25.533 16.0202 10.6909 0.9123 19464 21250 0.4556 0.2627 0.4387 0.4385 0.0476 19.8508 14.7046 0.4479
0.3551 19.0 2764 1.4725 10010 4451 2438 1385 19131 16927 14723 12519 52.3235 26.2953 16.5591 11.0632 0.8952 19131 21250 0.4606 0.2672 0.4438 0.4434 0.0463 20.0572 14.3807 0.4523
0.3301 19.93 2900 1.5030 9858 4378 2406 1368 18872 16668 14464 12260 52.2361 26.2659 16.6344 11.1582 0.8816 18872 21250 0.4569 0.2644 0.4412 0.4405 0.0495 19.8047 14.2795 0.4483

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.1.0
  • Datasets 2.12.0
  • Tokenizers 0.13.3