|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- wikiann |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: microsoft-deberta-v3-large_ner_wikiann |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: wikiann |
|
type: wikiann |
|
config: en |
|
split: train |
|
args: en |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.8557286258220838 |
|
- name: Recall |
|
type: recall |
|
value: 0.8738159196946134 |
|
- name: F1 |
|
type: f1 |
|
value: 0.8646776957783918 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9406352438660972 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# microsoft-deberta-v3-large_ner_wikiann |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the wikiann dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3108 |
|
- Precision: 0.8557 |
|
- Recall: 0.8738 |
|
- F1: 0.8647 |
|
- Accuracy: 0.9406 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 5 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3005 | 1.0 | 1250 | 0.2462 | 0.8205 | 0.8400 | 0.8301 | 0.9294 | |
|
| 0.1931 | 2.0 | 2500 | 0.2247 | 0.8448 | 0.8630 | 0.8538 | 0.9386 | |
|
| 0.1203 | 3.0 | 3750 | 0.2341 | 0.8468 | 0.8693 | 0.8579 | 0.9403 | |
|
| 0.0635 | 4.0 | 5000 | 0.2948 | 0.8596 | 0.8745 | 0.8670 | 0.9411 | |
|
| 0.0451 | 5.0 | 6250 | 0.3108 | 0.8557 | 0.8738 | 0.8647 | 0.9406 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.24.0 |
|
- Pytorch 1.13.0+cu117 |
|
- Datasets 2.7.1 |
|
- Tokenizers 0.13.2 |
|
|