metadata
tags:
- spacy
- token-classification
language:
- en
model-index:
- name: en_pipeline
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9851430668
- name: NER Recall
type: recall
value: 0.9871347179
- name: NER F Score
type: f_score
value: 0.9861378867
Feature | Description |
---|---|
Name | en_pipeline |
Version | 0.0.0 |
spaCy | >=3.7.2,<3.8.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 514157 keys, 514157 unique vectors (300 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (16 labels for 1 components)
Component | Labels |
---|---|
ner |
AGE GROUP , BENCHMARKS , CADAVERS/BIOMECHANICAL/NONCLINICAL , DEVICE , FOLLOW UP , INDICATION , LEVEL OF EVIDENCE , MANAGEMENT , PERFORMANCE OUTCOMES , RISK FACTORS , SAFETY OUTCOMES , SCORES , SEX , STATISTICAL SIGNIFICANCE , STRYKER , STUDY TYPE |
Accuracy
Type | Score |
---|---|
ENTS_F |
98.61 |
ENTS_P |
98.51 |
ENTS_R |
98.71 |
TOK2VEC_LOSS |
44342.33 |
NER_LOSS |
204832.98 |