metadata
tags:
- generated_from_trainer
datasets:
- Graphcore/gqa-lxmert
metrics:
- accuracy
model-index:
- name: gqa
results:
- task:
name: Question Answering
type: question-answering
dataset:
name: Graphcore/gqa-lxmert
type: Graphcore/gqa-lxmert
args: gqa
metrics:
- name: Accuracy
type: accuracy
value: 0.5933514030612245
gqa
This model is a fine-tuned version of unc-nlp/lxmert-base-uncased on the Graphcore/gqa-lxmert dataset. It achieves the following results on the evaluation set:
- Loss: 1.9326
- Accuracy: 0.5934
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- distributed_type: IPU
- total_train_batch_size: 64
- total_eval_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 4.0
- training precision: Mixed Precision
Training results
Framework versions
- Transformers 4.18.0.dev0
- Pytorch 1.10.0+cpu
- Datasets 2.0.0
- Tokenizers 0.11.6