Overview
Cross-encoder for russian language. Primarily trained for RAG purposes. Take two strings, assess if they are related (question and answer pair).
Usage
import torch
device = 'cuda' if torch.cuda.is_available() else 'cpu'
!wget https://huggingface.co/GrigoryT22/cross-encoder-ru/resolve/main/model.pt # or simply load the file via browser
model = Model() # copy-past class code (see below) and run it
model.load_state_dict(torch.load('./model.pt'), strict=False) # path to downloaded file with the model
# missing_keys=['labse.embeddings.position_ids'] - this is [OK](https://github.com/huggingface/transformers/issues/16353)
string_1 = """
Компания судится с артистом
""".strip()
string_2 = """
По заявлению инвесторов, компания знала о рисках заключения подобного контракта задолго до антисемитских высказываний Уэста,
которые он озвучил в октябре 2022 года. Однако, несмотря на то, что Adidas прекратил сотрудничество с артистом,
избежать судебного разбирательства не удалось. После расторжения контракта с рэпером компания потеряет 1,3 миллиарда долларов.
""".strip()
model([
[string_1, string_2]
])
# should be something like this --->>> tensor([[-4.0403, 3.8442]], grad_fn=<AddmmBackward0>)
# model is pretty sure that these two strings are related, second number is bigger (logits for binary classifications, batch size one in this case)
Model class
class Model(nn.Module):
"""
labse - base bert-like model
from labse I use pooler layer as input
then classification head - binary classification to predict if this pair is TRUE question-answer
"""
def __init__(self):
super().__init__()
self.labse_config = AutoConfig.from_pretrained('cointegrated/LaBSE-en-ru')
self.labse = AutoModel.from_config(self.labse_config)
self.tokenizer = AutoTokenizer.from_pretrained('cointegrated/LaBSE-en-ru')
self.cls = nn.Sequential(OrderedDict(
[
('dropout_in', torch.nn.Dropout(.0)),
('layernorm_in' , nn.LayerNorm(768, eps=1e-05)),
('fc_1' , nn.Linear(768, 768 * 2)),
('act_1' , nn.GELU()),
('layernorm_1' , nn.LayerNorm(768 * 2, eps=1e-05)),
('fc_2' , nn.Linear(768 * 2, 768 * 2)),
('act_2' , nn.GELU()),
('layernorm_2' , nn.LayerNorm(768 * 2, eps=1e-05)),
('fc_3' , nn.Linear(768 * 2, 768)),
('act_3' , nn.GELU()),
('layernorm_3' , nn.LayerNorm(768, eps=1e-05)),
('fc_4' , nn.Linear(768, 256)),
('act_4' , nn.GELU()),
('layernorm_4' , nn.LayerNorm(256, eps=1e-05)),
('fc_5' , nn.Linear(256, 2, bias=True)),
]
))
def forward(self, text):
token = self.tokenizer(text, padding=True, truncation=True, return_tensors='pt').to(device)
model_output = self.labse(**token)
result = self.cls(model_output.pooler_output)
return result