GuiTap's picture
End of training
7031bb8 verified
|
raw
history blame
2.5 kB
metadata
license: apache-2.0
base_model: google-bert/bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-multilingual-uncased-finetuned-ner-geocorpus
    results: []

bert-base-multilingual-uncased-finetuned-ner-geocorpus

This model is a fine-tuned version of google-bert/bert-base-multilingual-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1337
  • Precision: 0.7867
  • Recall: 0.8827
  • F1: 0.8320
  • Accuracy: 0.9727

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 276 0.1785 0.6910 0.6597 0.6750 0.9527
0.2507 2.0 552 0.1321 0.7761 0.7689 0.7725 0.9630
0.2507 3.0 828 0.1158 0.7691 0.8165 0.7921 0.9669
0.084 4.0 1104 0.1186 0.7503 0.8479 0.7961 0.9668
0.084 5.0 1380 0.1287 0.7629 0.8560 0.8068 0.9657
0.0443 6.0 1656 0.1295 0.7453 0.8769 0.8058 0.9666
0.0443 7.0 1932 0.1423 0.7592 0.8862 0.8178 0.9685
0.0243 8.0 2208 0.1267 0.7970 0.8664 0.8303 0.9724
0.0243 9.0 2484 0.1309 0.7747 0.8746 0.8216 0.9710
0.0164 10.0 2760 0.1337 0.7867 0.8827 0.8320 0.9727

Framework versions

  • Transformers 4.41.1
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1