|
--- |
|
library_name: transformers |
|
license: mit |
|
base_model: FacebookAI/xlm-roberta-large |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- lener_br |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: xlm-roberta-large-finetuned-ner-lenerBr |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: lener_br |
|
type: lener_br |
|
config: lener_br |
|
split: validation |
|
args: lener_br |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9166029074215761 |
|
- name: Recall |
|
type: recall |
|
value: 0.9289222021194107 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9227214377406933 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9853721218641206 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# xlm-roberta-large-finetuned-ner-lenerBr |
|
|
|
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on the lener_br dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
- Precision: 0.9166 |
|
- Recall: 0.9289 |
|
- F1: 0.9227 |
|
- Accuracy: 0.9854 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 8 |
|
- total_train_batch_size: 16 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:------:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| No log | 0.9995 | 489 | nan | 0.8191 | 0.8167 | 0.8179 | 0.9751 | |
|
| 0.163 | 1.9990 | 978 | nan | 0.8600 | 0.9080 | 0.8833 | 0.9790 | |
|
| 0.0427 | 2.9985 | 1467 | nan | 0.8736 | 0.9163 | 0.8944 | 0.9814 | |
|
| 0.0279 | 4.0 | 1957 | nan | 0.8688 | 0.9191 | 0.8932 | 0.9801 | |
|
| 0.019 | 4.9995 | 2446 | nan | 0.9123 | 0.9196 | 0.9159 | 0.9840 | |
|
| 0.0143 | 5.9990 | 2935 | nan | 0.9008 | 0.9346 | 0.9174 | 0.9842 | |
|
| 0.0112 | 6.9985 | 3424 | nan | 0.9063 | 0.9250 | 0.9156 | 0.9843 | |
|
| 0.0072 | 8.0 | 3914 | nan | 0.8954 | 0.9315 | 0.9131 | 0.9841 | |
|
| 0.0065 | 8.9995 | 4403 | nan | 0.9226 | 0.9245 | 0.9236 | 0.9857 | |
|
| 0.0048 | 9.9949 | 4890 | nan | 0.9166 | 0.9289 | 0.9227 | 0.9854 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|