|
import cv2 |
|
import numpy as np |
|
from skimage import transform as trans |
|
|
|
src1 = np.array([[51.642, 50.115], [57.617, 49.990], [35.740, 69.007], |
|
[51.157, 89.050], [57.025, 89.702]], |
|
dtype=np.float32) |
|
|
|
src2 = np.array([[45.031, 50.118], [65.568, 50.872], [39.677, 68.111], |
|
[45.177, 86.190], [64.246, 86.758]], |
|
dtype=np.float32) |
|
|
|
|
|
src3 = np.array([[39.730, 51.138], [72.270, 51.138], [56.000, 68.493], |
|
[42.463, 87.010], [69.537, 87.010]], |
|
dtype=np.float32) |
|
|
|
|
|
src4 = np.array([[46.845, 50.872], [67.382, 50.118], [72.737, 68.111], |
|
[48.167, 86.758], [67.236, 86.190]], |
|
dtype=np.float32) |
|
|
|
|
|
src5 = np.array([[54.796, 49.990], [60.771, 50.115], [76.673, 69.007], |
|
[55.388, 89.702], [61.257, 89.050]], |
|
dtype=np.float32) |
|
|
|
multi_src = np.array([src1, src2, src3, src4, src5]) |
|
multi_src_map = {112: multi_src, 224: multi_src * 2, 512: multi_src * (512 / 112)} |
|
|
|
arcface_src = np.array( |
|
[[38.2946, 51.6963], [73.5318, 51.5014], [56.0252, 71.7366], |
|
[41.5493, 92.3655], [70.7299, 92.2041]], |
|
dtype=np.float32) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mtcnn_512 = [[187.20187, 239.27705], |
|
[324.1236, 238.51973], |
|
[256.09793, 317.14795], |
|
[199.84871, 397.30597], |
|
[313.2362, 396.6788]] |
|
|
|
mtcnn_256 = np.array(mtcnn_512) * 0.5 |
|
|
|
arcface_src_512 = arcface_src * np.array([512 / 112, 512 / 112]) |
|
arcface_src = np.expand_dims(arcface_src, axis=0) |
|
|
|
|
|
def get_src_modify(srcs, arcface_src): |
|
srcs += ((arcface_src[2] - srcs[2][2]) * np.array([1, 1.8]))[None] |
|
return srcs |
|
|
|
|
|
|
|
def estimate_norm(lmk, image_size=112, mode='arcface'): |
|
assert lmk.shape == (5, 2) |
|
tform = trans.SimilarityTransform() |
|
lmk_tran = np.insert(lmk, 2, values=np.ones(5), axis=1) |
|
min_M = [] |
|
min_index = [] |
|
min_error = float('inf') |
|
if mode == 'arcface': |
|
assert image_size == 112 |
|
src = arcface_src |
|
elif mode == 'arcface_512': |
|
src = np.expand_dims(arcface_src_512, axis=0) |
|
elif mode == 'mtcnn_512': |
|
src = np.expand_dims(mtcnn_512, axis=0) |
|
elif mode == 'mtcnn_256': |
|
src = np.expand_dims(mtcnn_256, axis=0) |
|
elif mode == 'default_95': |
|
src = get_src_modify(multi_src, arcface_src[0]) |
|
src_map = {112: src.copy(), 224: src.copy() * 2, 256: src.copy() * 256 / 112 * 0.95, |
|
512: src.copy() * (512 / 112) * 0.95} |
|
src = src_map[image_size] |
|
else: |
|
src = multi_src_map[image_size] |
|
for i in np.arange(src.shape[0]): |
|
tform.estimate(lmk, src[i]) |
|
M = tform.params[0:2, :] |
|
results = np.dot(M, lmk_tran.T) |
|
results = results.T |
|
error = np.sum(np.sqrt(np.sum((results - src[i]) ** 2, axis=1))) |
|
|
|
if error < min_error: |
|
min_error = error |
|
min_M = M |
|
min_index = i |
|
return min_M, min_index |
|
|
|
|
|
def norm_crop(img, landmark, crop_size=112, mode='arcface'): |
|
mat, pose_index = estimate_norm(landmark, crop_size, mode) |
|
warped = cv2.warpAffine(img, mat, (crop_size, crop_size), borderMode=cv2.BORDER_REPLICATE) |
|
|
|
mat_rev = cv2.invertAffineTransform(mat) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
return warped, mat_rev |
|
|
|
|
|
def apply_roi_func(img, box, facial5points): |
|
box = np.round(np.array(box)).astype(int)[:4] |
|
|
|
|
|
roi_pad = 0 |
|
roi_box = np.array([ |
|
max(0, box[0] - roi_pad), |
|
max(0, box[1] - roi_pad), |
|
min(img.shape[1], box[2] + roi_pad), |
|
min(img.shape[0], box[3] + roi_pad) |
|
]) |
|
|
|
roi = img[roi_box[1]:roi_box[3], roi_box[0]:roi_box[2]].copy() |
|
|
|
mrow1 = roi_box[1] |
|
mcol1 = roi_box[0] |
|
|
|
roi_facial5points = facial5points.copy() |
|
|
|
roi_facial5points[:, 0] -= mcol1 |
|
roi_facial5points[:, 1] -= mrow1 |
|
|
|
return roi, roi_box, roi_facial5points |
|
|