git-base-captioning / README.md
Guspfc's picture
Upload processor
f196e67 verified
|
raw
history blame
3.2 kB
metadata
license: mit
tags:
  - generated_from_trainer
base_model: microsoft/git-base
datasets:
  - imagefolder
model-index:
  - name: git-base-captioning
    results: []

git-base-captioning

This model is a fine-tuned version of microsoft/git-base on the imagefolder dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3575
  • Wer Score: 0.8322

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer Score
7.8992 0.3540 20 7.5466 11.1579
5.9879 0.7080 40 5.6121 5.1946
4.1288 1.0619 60 3.7153 4.5433
2.3477 1.4159 80 1.9989 4.0242
1.0242 1.7699 100 0.8650 0.8657
0.4954 2.1239 120 0.4766 0.8676
0.3365 2.4779 140 0.3993 3.7516
0.4286 2.8319 160 0.3773 0.8336
0.2952 3.1858 180 0.3663 0.8329
0.3996 3.5398 200 0.3619 0.8224
0.2629 3.8938 220 0.3574 0.8204
0.254 4.2478 240 0.3555 0.8178
0.2642 4.6018 260 0.3557 0.8132
0.2725 4.9558 280 0.3533 0.8139
0.2746 5.3097 300 0.3554 0.8093
0.1765 5.6637 320 0.3561 0.8244
0.2981 6.0177 340 0.3542 0.8375
0.1489 6.3717 360 0.3567 0.8329
0.256 6.7257 380 0.3553 0.8362
0.1574 7.0796 400 0.3558 0.8342
0.1836 7.4336 420 0.3566 0.8336
0.1697 7.7876 440 0.3578 0.8362
0.1596 8.1416 460 0.3571 0.8414
0.1628 8.4956 480 0.3579 0.8388
0.1958 8.8496 500 0.3572 0.8362
0.1695 9.2035 520 0.3575 0.8303
0.1686 9.5575 540 0.3576 0.8336
0.2166 9.9115 560 0.3575 0.8322

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1