Mathmate-7B-DELLA / README.md
Haleshot's picture
Add `Evaluation Results` Table
d8ca261 verified
metadata
base_model:
  - AI-MO/NuminaMath-7B-TIR
  - deepseek-ai/DeepSeek-Prover-V1.5-RL
tags:
  - merge
  - mergekit
  - lazymergekit
  - AI-MO/NuminaMath-7B-TIR
  - deepseek-ai/DeepSeek-Prover-V1.5-RL
license: apache-2.0
model-index:
  - name: Mathmate-7B-DELLA
    results:
      - task:
          type: text-generation
        dataset:
          name: AGIEval
          type: AGIEval
        metrics:
          - name: AGIEval
            type: AGIEval
            value: 21.95
      - task:
          type: text-generation
        dataset:
          name: GPT4All
          type: GPT4All
        metrics:
          - name: GPT4All
            type: GPT4All
            value: 36.5
      - task:
          type: text-generation
        dataset:
          name: TruthfulQA
          type: TruthfulQA
        metrics:
          - name: TruthfulQA
            type: TruthfulQA
            value: 48.08
      - task:
          type: text-generation
        dataset:
          name: Bigbench
          type: Bigbench
        metrics:
          - name: Bigbench
            type: Bigbench
            value: 28.89

Mathmate-7B-DELLA

Mathmate-7B-DELLA is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: AI-MO/NuminaMath-7B-TIR
    parameters:
      density: 0.5
      weight: 0.3
  - model: deepseek-ai/DeepSeek-Prover-V1.5-RL
    parameters:
      density: 0.5
      weight: 0.2
merge_method: della
base_model: deepseek-ai/deepseek-math-7b-base
parameters:
  normalize: true
dtype: bfloat16

💻 Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "Haleshot/Mathmate-7B-DELLA"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])

📊 Evaluation Results

Evaluation results using LLMAutoeval:

Model AGIEval GPT4All TruthfulQA Bigbench Average
Mathmate-7B-DELLA 21.95 36.5 48.08 28.89 33.86

AGIEval

Task Version Metric Value Stderr
agieval_aqua_rat 0 acc 21.26 2.57
acc_norm 22.05 2.61
agieval_logiqa_en 0 acc 20.89 1.59
acc_norm 25.65 1.71
agieval_lsat_ar 0 acc 21.74 2.73
acc_norm 19.57 2.62
agieval_lsat_lr 0 acc 13.92 1.53
acc_norm 18.82 1.73
agieval_lsat_rc 0 acc 21.19 2.50
acc_norm 18.96 2.39
agieval_sat_en 0 acc 24.76 3.01
acc_norm 21.36 2.86
agieval_sat_en_without_passage 0 acc 27.18 3.11
acc_norm 23.30 2.95
agieval_sat_math 0 acc 25.45 2.94
acc_norm 25.91 2.96

Average: 21.95%

GPT4All

Task Version Metric Value Stderr
arc_challenge 0 acc 22.61 1.22
acc_norm 25.68 1.28
arc_easy 0 acc 25.25 0.89
acc_norm 25.08 0.89
boolq 1 acc 52.02 0.87
hellaswag 0 acc 25.77 0.44
acc_norm 26.09 0.44
openbookqa 0 acc 18.40 1.73
acc_norm 28.80 2.03
piqa 0 acc 51.31 1.17
acc_norm 50.11 1.17
winogrande 0 acc 47.75 1.40

Average: 36.5%

TruthfulQA

Task Version Metric Value Stderr
truthfulqa_mc 1 mc1 22.77 1.47
mc2 48.08 1.70

Average: 48.08%

Bigbench

Task Version Metric Value Stderr
bigbench_causal_judgement 0 multiple_choice_grade 49.47 3.64
bigbench_date_understanding 0 multiple_choice_grade 13.55 1.78
bigbench_disambiguation_qa 0 multiple_choice_grade 30.23 2.86
bigbench_geometric_shapes 0 multiple_choice_grade 10.03 1.59
exact_str_match 0.00 0.00
bigbench_logical_deduction_five_objects 0 multiple_choice_grade 19.40 1.77
bigbench_logical_deduction_seven_objects 0 multiple_choice_grade 14.00 1.31
bigbench_logical_deduction_three_objects 0 multiple_choice_grade 36.67 2.79
bigbench_movie_recommendation 0 multiple_choice_grade 23.60 1.90
bigbench_navigate 0 multiple_choice_grade 47.10 1.58
bigbench_reasoning_about_colored_objects 0 multiple_choice_grade 13.05 0.75
bigbench_ruin_names 0 multiple_choice_grade 53.79 2.36
bigbench_salient_translation_error_detection 0 multiple_choice_grade 15.63 1.15
bigbench_snarks 0 multiple_choice_grade 46.96 3.72
bigbench_sports_understanding 0 multiple_choice_grade 49.70 1.59
bigbench_temporal_sequences 0 multiple_choice_grade 25.80 1.38
bigbench_tracking_shuffled_objects_five_objects 0 multiple_choice_grade 19.76 1.13
bigbench_tracking_shuffled_objects_seven_objects 0 multiple_choice_grade 14.69 0.85
bigbench_tracking_shuffled_objects_three_objects 0 multiple_choice_grade 36.67 2.79

Average: 28.89%

Average score: 33.86%

Elapsed time: 03:52:09