|
--- |
|
base_model: |
|
- AI-MO/NuminaMath-7B-TIR |
|
- deepseek-ai/DeepSeek-Prover-V1.5-RL |
|
license: apache-2.0 |
|
tags: |
|
- moe |
|
- frankenmoe |
|
- merge |
|
- mergekit |
|
- lazymergekit |
|
- AI-MO/NuminaMath-7B-TIR |
|
- deepseek-ai/DeepSeek-Prover-V1.5-RL |
|
--- |
|
|
|
# Mathmate-7B-dare-ties |
|
|
|
Mathmate-7B-dare-ties is a Mixture of Experts (MoE) made with the following models using [LazyMergekit](https://colab.research.google.com/drive/1obulZ1ROXHjYLn6PPZJwRR6GzgQogxxb?usp=sharing): |
|
* [AI-MO/NuminaMath-7B-TIR](https://huggingface.co/AI-MO/NuminaMath-7B-TIR) |
|
* [deepseek-ai/DeepSeek-Prover-V1.5-RL](https://huggingface.co/deepseek-ai/DeepSeek-Prover-V1.5-RL) |
|
|
|
## 🧩 Configuration |
|
|
|
```yaml |
|
base_model: AI-MO/NuminaMath-7B-TIR |
|
gate_mode: hidden |
|
dtype: bfloat16 |
|
experts: |
|
- source_model: AI-MO/NuminaMath-7B-TIR |
|
positive_prompts: |
|
- "This model is good at solving math questions at high school level and generating python code for the same" |
|
# - source_model: Qwen/Qwen2-Math-7B-Instruct |
|
# positive_prompts: |
|
# - "This model is really good at solving college level math to olympiad level questions" |
|
- source_model: deepseek-ai/DeepSeek-Prover-V1.5-RL |
|
positive_prompts: |
|
- "This model is good at formal theorem providing math problems" |
|
``` |
|
|
|
## 💻 Usage |
|
|
|
```python |
|
!pip install -qU transformers bitsandbytes accelerate |
|
|
|
from transformers import AutoTokenizer |
|
import transformers |
|
import torch |
|
|
|
model = "Haleshot/Mathmate-7B-dare-ties" |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model) |
|
pipeline = transformers.pipeline( |
|
"text-generation", |
|
model=model, |
|
model_kwargs={"torch_dtype": torch.float16, "load_in_4bit": True}, |
|
) |
|
|
|
messages = [{"role": "user", "content": "Explain what a Mixture of Experts is in less than 100 words."}] |
|
prompt = pipeline.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) |
|
print(outputs[0]["generated_text"]) |
|
``` |