File size: 2,592 Bytes
241ef62
d8689ab
766dc00
7387b65
d8689ab
 
7387b65
 
 
 
d8689ab
241ef62
7387b65
 
241ef62
7387b65
241ef62
766dc00
7387b65
 
 
 
 
 
 
 
 
 
 
241ef62
7387b65
241ef62
7387b65
241ef62
7387b65
241ef62
7387b65
241ef62
7387b65
241ef62
7387b65
241ef62
7387b65
241ef62
7387b65
241ef62
7387b65
 
 
 
 
 
 
 
 
241ef62
7387b65
241ef62
7387b65
 
 
 
 
241ef62
 
7387b65
241ef62
7387b65
 
 
d8689ab
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: other
base_model: microsoft/beit-base-finetuned-ade-640-640
tags:
- vision
- image-segmentation
- generated_from_trainer
model-index:
- name: BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB
  results: []
pipeline_tag: image-segmentation
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# BEiT_beit-base-finetuned-ade-640-640_Clean-Set1_RGB

This model is a fine-tuned version of [microsoft/beit-base-finetuned-ade-640-640](https://huggingface.co/microsoft/beit-base-finetuned-ade-640-640) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0603
- Mean Iou: 0.9672
- Mean Accuracy: 0.9774
- Overall Accuracy: 0.9930
- Accuracy Background: 0.9961
- Accuracy Melt: 0.9392
- Accuracy Substrate: 0.9971
- Iou Background: 0.9929
- Iou Melt: 0.9207
- Iou Substrate: 0.9879

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 200
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Background | Accuracy Melt | Accuracy Substrate | Iou Background | Iou Melt | Iou Substrate |
|:-------------:|:-------:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------------:|:-------------:|:------------------:|:--------------:|:--------:|:-------------:|
| 0.3924        | 5.5556  | 50   | 0.3038          | 0.9022   | 0.9499        | 0.9809           | 0.9854              | 0.8738        | 0.9906             | 0.9853         | 0.7493   | 0.9719        |
| 0.0857        | 11.1111 | 100  | 0.0788          | 0.9656   | 0.9771        | 0.9931           | 0.9972              | 0.9377        | 0.9964             | 0.9939         | 0.9146   | 0.9883        |
| 0.0816        | 16.6667 | 150  | 0.0603          | 0.9672   | 0.9774        | 0.9930           | 0.9961              | 0.9392        | 0.9971             | 0.9929         | 0.9207   | 0.9879        |


### Framework versions

- Transformers 4.41.2
- Pytorch 2.0.1+cu117
- Datasets 2.19.2
- Tokenizers 0.19.1