HeConEspc / README.md
vitvit's picture
Update README.md
765d88d verified
metadata
license: apache-2.0
language:
  - he
datasets:
  - HeTree/MevakerConcSen

Hebrew Conclusion Extraction Model (based on sequence plus context classification)

How to use

from transformers import  RobertaTokenizerFast, AutoModelForSequenceClassification
from datasets  import load_dataset, Dataset
from functools import partial
from tqdm.auto import tqdm
tqdm._instances.clear()

def tokenize_function(example):
    inputs = tokenizer(
        example["sentence"],
        example["context"],
        max_length=512,
        truncation=True,
        padding="max_length",
    )
    return inputs

def create_windowed_context_ds(context_l, example, idx):
    example["context"] = context_l[idx]
    return example

def create_windowed_context(raw_dataset, window_size):
    df_pandas = raw_dataset['train'].to_pandas()
    len1 = len(raw_dataset['train'])
    context_l = []
    for i in tqdm(range(len1)):
        if i - window_size <0:
            context_l.append(' '.join(df_pandas['sentence'][0:window_size]))
        else:
            if i + window_size > len1 :
                context_l.append(' '.join(df_pandas['sentence'][i - window_size:-1]))
            else:
                context_l.append(' '.join(df_pandas['sentence'][i - window_size:i + window_size]))
    return context_l

model = AutoModelForSequenceClassification.from_pretrained('HeTree/HeConEspc', num_labels=2)
tokenizer = RobertaTokenizerFast.from_pretrained('HeTree/HeConEspc')
raw_dataset = load_dataset('HeTree/MevakerConcSen')
window_size = 5
context_l = create_windowed_context(raw_dataset, window_size)
raw_dataset_window = raw_dataset.map(partial(create_windowed_context_ds, context_l), batched=False, with_indices=True)
tokenized_data = raw_dataset_window.map(tokenize_function, batched=True)

Citing

If you use HeConEspc in your research, please cite Mevaker: Conclusion Extraction and Allocation Resources for the Hebrew Language.

@article{shalumov2024mevaker,
      title={Mevaker: Conclusion Extraction and Allocation Resources for the Hebrew Language}, 
      author={Vitaly Shalumov and Harel Haskey and Yuval Solaz},
      year={2024},
      eprint={2403.09719},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}