Edit model card

opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa

Table of Contents

Model Details

Neural machine translation model for translating from Celtic languages (cel) to unknown (deu+eng+fra+por+spa).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train. Model Description:

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of >>id<< (id = valid target language ID), e.g. >>deu<<

Uses

This model can be used for translation and text-to-text generation.

Risks, Limitations and Biases

CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).

How to Get Started With the Model

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>deu<< Replace this with text in an accepted source language.",
    ">>spa<< This is the second sentence."
]

model_name = "pytorch-models/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa")
print(pipe(">>deu<< Replace this with text in an accepted source language."))

Training

Evaluation

langpair testset chr-F BLEU #sent #words
bre-eng tatoeba-test-v2021-08-07 0.53473 35.0 383 2065
bre-fra tatoeba-test-v2021-08-07 0.49013 28.3 2494 13324
cym-eng tatoeba-test-v2021-08-07 0.68892 52.4 818 5563
gla-eng tatoeba-test-v2021-08-07 0.39607 23.2 955 6611
gla-spa tatoeba-test-v2021-08-07 0.51208 26.1 289 1608
gle-eng tatoeba-test-v2021-08-07 0.64268 50.7 1913 11190
cym-deu flores101-devtest 0.52672 22.4 1012 25094
cym-fra flores101-devtest 0.58299 31.3 1012 28343
cym-por flores101-devtest 0.47733 18.4 1012 26519
gle-eng flores101-devtest 0.64773 38.6 1012 24721
gle-fra flores101-devtest 0.54559 26.5 1012 28343
cym-deu flores200-devtest 0.52745 22.6 1012 25094
cym-eng flores200-devtest 0.75234 55.5 1012 24721
cym-fra flores200-devtest 0.58339 31.4 1012 28343
cym-por flores200-devtest 0.47566 18.3 1012 26519
cym-spa flores200-devtest 0.48834 19.9 1012 29199
gla-deu flores200-devtest 0.41962 13.0 1012 25094
gla-eng flores200-devtest 0.53374 26.4 1012 24721
gla-fra flores200-devtest 0.44916 16.6 1012 28343
gla-spa flores200-devtest 0.40375 12.9 1012 29199
gle-deu flores200-devtest 0.49962 19.2 1012 25094
gle-eng flores200-devtest 0.64866 38.9 1012 24721
gle-fra flores200-devtest 0.54564 26.7 1012 28343
gle-por flores200-devtest 0.44768 14.9 1012 26519
gle-spa flores200-devtest 0.47347 18.7 1012 29199
cym-deu ntrex128 0.46627 16.3 1997 48761
cym-eng ntrex128 0.65343 40.0 1997 47673
cym-fra ntrex128 0.51183 23.8 1997 53481
cym-por ntrex128 0.42857 14.4 1997 51631
cym-spa ntrex128 0.51542 25.0 1997 54107
gle-deu ntrex128 0.46495 15.5 1997 48761
gle-eng ntrex128 0.60913 33.5 1997 47673
gle-fra ntrex128 0.49513 20.7 1997 53481
gle-por ntrex128 0.41767 13.2 1997 51631
gle-spa ntrex128 0.50755 23.6 1997 54107

Citation Information

@article{tiedemann2023democratizing,
  title={Democratizing neural machine translation with {OPUS-MT}},
  author={Tiedemann, J{\"o}rg and Aulamo, Mikko and Bakshandaeva, Daria and Boggia, Michele and Gr{\"o}nroos, Stig-Arne and Nieminen, Tommi and Raganato, Alessandro and Scherrer, Yves and Vazquez, Raul and Virpioja, Sami},
  journal={Language Resources and Evaluation},
  number={58},
  pages={713--755},
  year={2023},
  publisher={Springer Nature},
  issn={1574-0218},
  doi={10.1007/s10579-023-09704-w}
}

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Acknowledgements

The work is supported by the HPLT project, funded by the European Union’s Horizon Europe research and innovation programme under grant agreement No 101070350. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland, and the EuroHPC supercomputer LUMI.

Model conversion info

  • transformers version: 4.45.1
  • OPUS-MT git hash: a0ea3b3
  • port time: Mon Oct 7 23:09:42 EEST 2024
  • port machine: LM0-400-22516.local
Downloads last month
3
Safetensors
Model size
234M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Collection including Helsinki-NLP/opus-mt-tc-bible-big-cel-deu_eng_fra_por_spa

Evaluation results