Edit model card

opus-mt-tc-big-he-itc

Table of Contents

Model Details

Neural machine translation model for translating from Hebrew (he) to Italic languages (itc).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train. Model Description:

  • Developed by: Language Technology Research Group at the University of Helsinki
  • Model Type: Translation (transformer-big)
  • Release: 2022-07-25
  • License: CC-BY-4.0
  • Language(s):
    • Source Language(s): heb
    • Target Language(s): cat fra glg ita por ron spa
    • Language Pair(s): heb-cat heb-fra heb-glg heb-ita heb-por heb-ron heb-spa
    • Valid Target Language Labels: >>acf<< >>aoa<< >>arg<< >>ast<< >>cat<< >>cbk<< >>ccd<< >>cks<< >>cos<< >>cri<< >>crs<< >>dlm<< >>drc<< >>egl<< >>ext<< >>fab<< >>fax<< >>fra<< >>frc<< >>frm<< >>fro<< >>frp<< >>fur<< >>gcf<< >>gcf_Latn<< >>gcr<< >>glg<< >>hat<< >>idb<< >>ist<< >>ita<< >>itk<< >>kea<< >>kmv<< >>lad<< >>lad_Latn<< >>lat<< >>lat_Latn<< >>lij<< >>lld<< >>lmo<< >>lou<< >>mcm<< >>mfe<< >>mol<< >>mwl<< >>mxi<< >>mzs<< >>nap<< >>nrf<< >>oci<< >>osc<< >>osp<< >>osp_Latn<< >>pap<< >>pcd<< >>pln<< >>pms<< >>pob<< >>por<< >>pov<< >>pre<< >>pro<< >>qbb<< >>qhr<< >>rcf<< >>rgn<< >>roh<< >>ron<< >>ruo<< >>rup<< >>ruq<< >>scf<< >>scn<< >>sdc<< >>sdn<< >>spa<< >>spq<< >>spx<< >>src<< >>srd<< >>sro<< >>tmg<< >>tvy<< >>vec<< >>vkp<< >>wln<< >>xfa<< >>xum<<
  • Original Model: opusTCv20210807_transformer-big_2022-07-25.zip
  • Resources for more information:

This is a multilingual translation model with multiple target languages. A sentence initial language token is required in the form of >>id<< (id = valid target language ID), e.g. >>fra<<

Uses

This model can be used for translation and text-to-text generation.

Risks, Limitations and Biases

CONTENT WARNING: Readers should be aware that the model is trained on various public data sets that may contain content that is disturbing, offensive, and can propagate historical and current stereotypes.

Significant research has explored bias and fairness issues with language models (see, e.g., Sheng et al. (2021) and Bender et al. (2021)).

How to Get Started With the Model

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    ">>cat<< ΧžΧ¨Χ™ Χ€ΧžΧ™Χ Χ™Χ‘Χ˜Χ™Χͺ.",
    ">>spa<< ΧͺΧͺΧ¨ΧžΧ• ΧœΧ˜Χ˜Χ•ΧΧ‘Χ”."
]

model_name = "pytorch-models/opus-mt-tc-big-he-itc"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     Mary Γ©s feminista.
#     Donen a Tatoeba.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-he-itc")
print(pipe(">>cat<< ΧžΧ¨Χ™ Χ€ΧžΧ™Χ Χ™Χ‘Χ˜Χ™Χͺ."))

# expected output: Mary Γ©s feminista.

Training

Evaluation

langpair testset chr-F BLEU #sent #words
heb-fra tatoeba-test-v2021-08-07 0.64713 47.5 3281 26123
heb-ita tatoeba-test-v2021-08-07 0.64836 42.1 1706 11464
heb-por tatoeba-test-v2021-08-07 0.61428 41.2 719 5335
heb-spa tatoeba-test-v2021-08-07 0.69210 51.3 1849 14213
heb-cat flores101-devtest 0.56398 30.4 1012 27304
heb-fra flores101-devtest 0.59254 33.7 1012 28343
heb-glg flores101-devtest 0.51861 24.5 1012 26582
heb-ita flores101-devtest 0.50540 20.8 1012 27306
heb-por flores101-devtest 0.58818 33.1 1012 26519
heb-ron flores101-devtest 0.51480 22.3 1012 26799
heb-spa flores101-devtest 0.49786 21.6 1012 29199

Citation Information

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 8b9f0b0
  • port time: Sat Aug 13 00:06:50 EEST 2022
  • port machine: LM0-400-22516.local
Downloads last month
13
Safetensors
Model size
239M params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using Helsinki-NLP/opus-mt-tc-big-he-itc 5

Evaluation results