patrickvonplaten's picture
Add `opus-mt-tc` tag
fade1c6
|
raw
history blame
6.29 kB
metadata
language:
  - en
  - hu
tags:
  - translation
  - opus-mt-tc
license: cc-by-4.0
model-index:
  - name: opus-mt-tc-big-hu-en
    results:
      - task:
          name: Translation hun-eng
          type: translation
          args: hun-eng
        dataset:
          name: flores101-devtest
          type: flores_101
          args: hun eng devtest
        metrics:
          - name: BLEU
            type: bleu
            value: 34.6
      - task:
          name: Translation hun-eng
          type: translation
          args: hun-eng
        dataset:
          name: tatoeba-test-v2021-08-07
          type: tatoeba_mt
          args: hun-eng
        metrics:
          - name: BLEU
            type: bleu
            value: 50.4
      - task:
          name: Translation hun-eng
          type: translation
          args: hun-eng
        dataset:
          name: newstest2009
          type: wmt-2009-news
          args: hun-eng
        metrics:
          - name: BLEU
            type: bleu
            value: 23.4

opus-mt-tc-big-hu-en

Neural machine translation model for translating from Hungarian (hu) to English (en).

This model is part of the OPUS-MT project, an effort to make neural machine translation models widely available and accessible for many languages in the world. All models are originally trained using the amazing framework of Marian NMT, an efficient NMT implementation written in pure C++. The models have been converted to pyTorch using the transformers library by huggingface. Training data is taken from OPUS and training pipelines use the procedures of OPUS-MT-train.

@inproceedings{tiedemann-thottingal-2020-opus,
    title = "{OPUS}-{MT} {--} Building open translation services for the World",
    author = {Tiedemann, J{\"o}rg  and Thottingal, Santhosh},
    booktitle = "Proceedings of the 22nd Annual Conference of the European Association for Machine Translation",
    month = nov,
    year = "2020",
    address = "Lisboa, Portugal",
    publisher = "European Association for Machine Translation",
    url = "https://aclanthology.org/2020.eamt-1.61",
    pages = "479--480",
}

@inproceedings{tiedemann-2020-tatoeba,
    title = "The Tatoeba Translation Challenge {--} Realistic Data Sets for Low Resource and Multilingual {MT}",
    author = {Tiedemann, J{\"o}rg},
    booktitle = "Proceedings of the Fifth Conference on Machine Translation",
    month = nov,
    year = "2020",
    address = "Online",
    publisher = "Association for Computational Linguistics",
    url = "https://aclanthology.org/2020.wmt-1.139",
    pages = "1174--1182",
}

Model info

Usage

A short example code:

from transformers import MarianMTModel, MarianTokenizer

src_text = [
    "Bárcsak ne láttam volna ilyen borzalmas filmet!",
    "Iskolában van."
]

model_name = "pytorch-models/opus-mt-tc-big-hu-en"
tokenizer = MarianTokenizer.from_pretrained(model_name)
model = MarianMTModel.from_pretrained(model_name)
translated = model.generate(**tokenizer(src_text, return_tensors="pt", padding=True))

for t in translated:
    print( tokenizer.decode(t, skip_special_tokens=True) )

# expected output:
#     I wish I hadn't seen such a terrible movie.
#     She's at school.

You can also use OPUS-MT models with the transformers pipelines, for example:

from transformers import pipeline
pipe = pipeline("translation", model="Helsinki-NLP/opus-mt-tc-big-hu-en")
print(pipe("Bárcsak ne láttam volna ilyen borzalmas filmet!"))

# expected output: I wish I hadn't seen such a terrible movie.

Benchmarks

langpair testset chr-F BLEU #sent #words
hun-eng tatoeba-test-v2021-08-07 0.66644 50.4 13037 94699
hun-eng flores101-devtest 0.61974 34.6 1012 24721
hun-eng newssyscomb2009 0.52563 24.7 502 11818
hun-eng newstest2009 0.51698 23.4 2525 65399

Acknowledgements

The work is supported by the European Language Grid as pilot project 2866, by the FoTran project, funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 771113), and the MeMAD project, funded by the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No 780069. We are also grateful for the generous computational resources and IT infrastructure provided by CSC -- IT Center for Science, Finland.

Model conversion info

  • transformers version: 4.16.2
  • OPUS-MT git hash: 3405783
  • port time: Wed Apr 13 19:33:38 EEST 2022
  • port machine: LM0-400-22516.local