Edit model card

This model predicts the time period given a synopsis of about 200 Chinese characters. The model is trained on TV and Movie datasets and takes simplified Chinese as input.

We trained the model from the "hfl/chinese-bert-wwm-ext" checkpoint.

Sample Usage

from transformers import BertTokenizer, BertForSequenceClassification

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
checkpoint = "Herais/pred_timeperiod"
tokenizer = BertTokenizer.from_pretrained(checkpoint, 
                                          problem_type="single_label_classification")
model = BertForSequenceClassification.from_pretrained(checkpoint).to(device)

label2id_timeperiod = {'古代': 0, '当代': 1, '现代': 2, '近代': 3, '重大': 4}
id2label_timeperiod = {0: '古代', 1: '当代', 2: '现代', 3: '近代', 4: '重大'}

synopsis = """加油吧!检察官。鲤州市安平区检察院检察官助理蔡晓与徐美津是两个刚入职场的“菜鸟”。\
他们在老检察官冯昆的指导与鼓励下,凭借着自己的一腔热血与对检察事业的执著追求,克服工作上的种种困难,\
成功办理电竞赌博、虚假诉讼、水产市场涉黑等一系列复杂案件,惩治了犯罪分子,维护了人民群众的合法权益,\
为社会主义法治建设贡献了自己的一份力量。在这个过程中,蔡晓与徐美津不仅得到了业务能力上的提升,\
也领悟了人生的真谛,学会真诚地面对家人与朋友,收获了亲情与友谊,成长为合格的员额检察官,\
继续为检察事业贡献自己的青春。 """

inputs = tokenizer(synopsis, truncation=True, max_length=512, return_tensors='pt')
model.eval()
outputs = model(**input)
    
label_ids_pred = torch.argmax(outputs.logits, dim=1).to('cpu').numpy()
labels_pred = [id2label_timeperiod[label] for label in labels_pred]

print(labels_pred)
# ['当代']

Citation {}

Downloads last month
32
Safetensors
Model size
102M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.