Hezam's picture
Update README.md
1c299fa
|
raw
history blame
950 Bytes
metadata
language:
  - ar
metrics:
  - accuracy
  - bleu
library_name: transformers
pipeline_tag: text2text-generation

This model is under trial.

The number in the generated text represents the category of the news, as shown below. category_mapping = {

'Political':1,
'Economy':2,
'Health':3,
'Sport':4,
'Culture':5,
'Technology':6,
'Art':7,
'Accidents':8

}

image/png

Example usage

model_name = "Hezam/arabic-T5-news-classification-generation" from transformers import T5ForConditionalGeneration, T5Tokenizer model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) input_text = " الاستاذ حزام جوبح يحصل على براعة اختراع في التعلم العميق"

output_text = model.generate(input_text)

print(generated_text)