Hezam's picture
Update README.md
c47847c
|
raw
history blame
1.42 kB
metadata
language:
  - ar
metrics:
  - accuracy
  - bleu
library_name: transformers
pipeline_tag: text2text-generation

This model is under trial.

The number in the generated text represents the category of the news, as shown below. category_mapping = {

'Political':1,
'Economy':2,
'Health':3,
'Sport':4,
'Culture':5,
'Technology':6,
'Art':7,
'Accidents':8

}

image/png

Example usage

from transformers import T5ForConditionalGeneration, T5Tokenizer, pipeline from arabert.preprocess import ArabertPreprocessor

arabert_prep = ArabertPreprocessor(model_name="aubmindlab/bert-base-arabertv2") model_name="Hezam/arabic-T5-news-classification-generation" model = T5ForConditionalGeneration.from_pretrained(model_name) tokenizer = T5Tokenizer.from_pretrained(model_name) generation_pipeline = pipeline("text2text-generation",model=model,tokenizer=tokenizer)

text = " الاستاذ حزام جوبح يحصل على براعة اختراع في التعلم العميق" text_clean = arabert_prep.preprocess(text) g=generation_pipeline(text_clean, num_beams=10, max_length=config.Generation_LEN, top_p=0.9, repetition_penalty = 3.0, no_repeat_ngram_size = 3)[0]["generated_text"]