Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: Hiroaki Hara(@Himalayan-wildcat)
  • Language(s) (NLP): ja
  • License: MIT
  • Finetuned from model [optional]: llm-jp/llm-jp-3-13b

Uses

import json
import re

import torch
from peft import PeftModel
from tqdm import tqdm
from transformers import (
    AutoModelForCausalLM,
    AutoTokenizer,
    BitsAndBytesConfig,
)


model_id = "hiroakihara/llm-jp-3-13b-finetune"
hf_token = "YOUR HUGGINGFACE TOKEN"
test_jsonl_data = "elyza-tasks-100-TV_0.jsonl"

bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_quant_type="nf4",
    bnb_4bit_compute_dtype=torch.bfloat16)

model = AutoModelForCausalLM.from_pretrained(
    model_id,
    quantization_config=bnb_config,
    device_map="auto",
    token = hf_token)

tokenizer = AutoTokenizer.from_pretrained(
    model_id, 
    trust_remote_code=True, 
    token=hf_token)

datasets = []
with open(test_jsonl_data) as f:
    item = ""
    for line in f:
      line = line.strip()
      item += line
      if item.endswith("}"):
        datasets.append(json.loads(item))
        item = ""

results = []
for data in tqdm(datasets):
  input = data["input"]
  prompt = f"""### 指示
  {input}
  ### 回答
  """
  tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device)
  attention_mask = torch.ones_like(tokenized_input)

  with torch.no_grad():
      outputs = model.generate(
          tokenized_input,
          attention_mask=attention_mask,
          max_new_tokens=100,
          do_sample=False,
          repetition_penalty=1.2,
          pad_token_id=tokenizer.eos_token_id
      )[0]
  output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)
  results.append({"task_id": data["task_id"], "input": input, "output": output})        

jsonl_id = re.sub(".*/", "", model_id)
with open(f"./{jsonl_id}-outputs.jsonl", 'w', encoding='utf-8') as f:
    for result in results:
        json.dump(result, f, ensure_ascii=False)
        f.write('\n')
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Himalayan-wildcat/llm-jp-3-13b-finetune

Finetuned
(1124)
this model