metadata
tags:
- generated_from_trainer
model-index:
- name: icdar23-entrydetector_plaintext
results: []
icdar23-entrydetector_plaintext
This model is a fine-tuned version of HueyNemud/das22-10-camembert_pretrained on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0191
- Ebegin: {'precision': 0.993127147766323, 'recall': 0.9626915389740173, 'f1': 0.9776725304465493, 'number': 3002}
- Eend: {'precision': 0.9910313901345291, 'recall': 0.9576666666666667, 'f1': 0.9740634005763689, 'number': 3000}
- Overall Precision: 0.9921
- Overall Recall: 0.9602
- Overall F1: 0.9759
- Overall Accuracy: 0.9954
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 6000
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.07 | 300 | 0.0312 | 0.9804 | 0.9791 | 0.9797 | 0.9960 |
0.1423 | 0.14 | 600 | 0.0232 | 0.9920 | 0.9670 | 0.9793 | 0.9958 |
0.1423 | 0.21 | 900 | 0.0164 | 0.9959 | 0.9696 | 0.9825 | 0.9965 |
0.0242 | 0.29 | 1200 | 0.0174 | 0.9850 | 0.9744 | 0.9797 | 0.9959 |
0.0169 | 0.36 | 1500 | 0.0165 | 0.9913 | 0.9696 | 0.9803 | 0.9960 |
0.0169 | 0.43 | 1800 | 0.0168 | 0.9908 | 0.9715 | 0.9810 | 0.9962 |
0.0153 | 0.5 | 2100 | 0.0164 | 0.9884 | 0.9702 | 0.9793 | 0.9960 |
Framework versions
- Transformers 4.26.0
- Pytorch 1.13.1+cu116
- Datasets 2.9.0
- Tokenizers 0.13.2