Text Classification
Transformers
Safetensors
English
bert
Inference Endpoints
fineweb-edu-classifier / src /run_edu_bert.py
anton-l's picture
anton-l HF staff
Update src/run_edu_bert.py
d7b750e verified
import torch
import argparse
from transformers import AutoTokenizer, AutoModelForSequenceClassification
from datasets import load_dataset
def main(args):
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
model = AutoModelForSequenceClassification.from_pretrained(args.model_name, torch_dtype=torch.bfloat16)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
dataset = load_dataset(args.dataset_name, args.dataset_config,
split="train", cache_dir="/scratch/cosmo/cache/", num_proc=12)
dataset = dataset.filter(lambda x, i: i % args.num_shards == args.shard, with_indices=True, num_proc=12)
def compute_scores(batch):
inputs = tokenizer(batch[args.text_column], return_tensors="pt", padding="longest", truncation=True).to(device)
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits.squeeze(-1).float().cpu().numpy()
batch["score"] = logits.tolist()
batch["int_score"] = [int(round(max(0, min(score, 5)))) for score in logits]
return batch
dataset = dataset.map(compute_scores, batched=True, batch_size=512)
while True:
try:
config_name = f"{args.output_dataset_config}_{args.shard}"
dataset.push_to_hub(args.output_dataset_name, config_name=config_name, private=True, max_shard_size="4096MB")
break
except Exception as e:
print(e)
continue
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--model_name", type=str, default="HuggingFaceFW/fineweb-edu-classifier")
parser.add_argument("--dataset_name", type=str, default="HuggingFaceFW/fineweb")
parser.add_argument("--dataset_config", type=str, default="default")
parser.add_argument("--output_dataset_name", type=str, default="HuggingFaceFW/fineweb-edu")
parser.add_argument("--output_dataset_config", type=str, default="default")
parser.add_argument("--text_column", type=str, default="text")
parser.add_argument("--shard", type=int, required=True)
parser.add_argument("--num_shards", type=int, required=True)
args = parser.parse_args()
main(args)