mistral-7b-grok / README.md
vwxyzjn's picture
Add HuggingFaceH4/mistral-7b-cai-v20.0.grokai.3.2 checkpoint
7c96ec4 verified
|
raw
history blame
1.68 kB
---
license: apache-2.0
base_model: mistralai/Mistral-7B-v0.1
tags:
- alignment-handbook
- generated_from_trainer
datasets:
- HuggingFaceH4/grok-conversation-harmless
- HuggingFaceH4/ultrachat_200k
model-index:
- name: mistral-7b-ift-v20.0.grokai.3.2
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral-7b-ift-v20.0.grokai.3.2
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the HuggingFaceH4/grok-conversation-harmless and the HuggingFaceH4/ultrachat_200k datasets.
It achieves the following results on the evaluation set:
- Loss: 0.9348
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 8
- gradient_accumulation_steps: 4
- total_train_batch_size: 256
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 0.9326 | 1.0 | 545 | 0.9348 |
### Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0