File size: 6,418 Bytes
f7ecb96 f485460 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 f485460 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 f485460 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 f485460 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f7ecb96 1b1b4a5 f485460 1b1b4a5 f485460 1b1b4a5 f485460 f7ecb96 1b1b4a5 f485460 1b1b4a5 f7ecb96 8045378 c1090c9 bc636e4 f7ecb96 bc636e4 f7ecb96 f485460 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
---
library_name: transformers
license: apache-2.0
datasets:
- HuggingFaceM4/the_cauldron
- HuggingFaceM4/Docmatix
pipeline_tag: image-text-to-text
---
# Model Card for Model ID
SmolVLM is a compact open multimodal model that accepts arbitrary sequences of image and text inputs to produce text outputs. Designed for efficiency, SmolVLM can answer questions about images, describe visual content, create stories grounded on multiple images, or function as a pure language model without visual inputs. Its lightweight architecture makes it suitable for on-device applications while maintaining strong performance on multimodal tasks.
## Model Details
### Model Description
<!-- Provide a longer summary of what this model is. -->
This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
- **Developed by:** Hugging Face 🤗
- **Model type:** Multi-modal model (image+text)
- **Language(s) (NLP):** English
- **License:** Apache 2.0
### Model Sources [optional]
<!-- Provide the basic links for the model. -->
- **Repository:** [More Information Needed]
- **Paper [optional]:** [More Information Needed]
- **Demo:** [SmolVLM Demo](https://huggingface.co/spaces/HuggingFaceTB/SmolVLM)
## Uses
SmolVLM can be used for inference on multimodal (image + text) tasks where the input comprises text queries along with one or more images. Text and images can be interleaved arbitrarily, enabling tasks like image captioning, visual question answering, and storytelling based on visual content. The model does not support image generation.
To fine-tune SmolVLM on a specific task, you can follow the fine-tuning tutorial.
### Technical Summary
SmolVLM leverages the lightweight SmolLM2 language model to provide a compact yet powerful multimodal experience. It introduces several changes compared to previous models:
- **Image compression:** We introduce a more radical image compression compared to Idefics3 to enable the model to infer faster and use less RAM.
- **Visual Token Encoding:** It uses 81 visual tokens to encode image patches of size 384*384. Larger images are divided into patches, each encoded separately, enhancing efficiency without compromising performance.
More details about the training and architecture are available in our technical report.
### How to get started
You can use transformers to load, infer and fine-tune SmolVLM.
```python
import torch
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
from transformers.image_utils import load_image
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
# Load images
image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg")
image2 = load_image("https://huggingface.co/spaces/merve/chameleon-7b/resolve/main/bee.jpg")
# Initialize processor and model
processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM-Instruct")
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-Instruct", torch_dtype=torch.bfloat16
).to(DEVICE)
# Create input messages
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "What do we see in this image?"}
]
},
{
"role": "assistant",
"content": [
{"type": "text", "text": "This image shows a city skyline with prominent landmarks."}
]
},
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": "And how about this image?"}
]
}
]
# Prepare inputs
prompt = processor.apply_chat_template(messages, add_generation_prompt=True)
inputs = processor(text=prompt, images=[image1, image2], return_tensors="pt")
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
# Generate outputs
generated_ids = model.generate(**inputs, max_new_tokens=500)
generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True)
print(generated_texts[0])
```
### Model optimizations
**Precision**: For better performance, load and run the model in half-precision (`torch.float16` or `torch.bfloat16`) if your hardware supports it.
```python
from transformers import AutoModelForVision2Seq
import torch
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-Instruct",
torch_dtype=torch.bfloat16
).to("cuda")
```
You can also load SmolVLM with 4/8-bit quantization using bitsandbytes, torchao or Quanto. Refer to [this page](https://huggingface.co/docs/transformers/en/main_classes/quantization) for other options.
```python
from transformers import AutoModelForVision2Seq, BitsAndBytesConfig
import torch
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
model = AutoModelForVision2Seq.from_pretrained(
"HuggingFaceTB/SmolVLM-Instruct",
quantization_config=quantization_config
)
```
**Vision Encoder Efficiency**: Adjust the image resolution by setting `size={"longest_edge": N*384}` when initializing the processor, where N is your desired value. The default `N=4` works well, but for documents, `N=5` might be beneficial. Decreasing N can save GPU memory for lower-resolution images. This is also useful if you want to fine-tune on videos.
## Misuse and Out-of-scope Use
SmolVLM is not intended for high-stakes scenarios or critical decision-making processes that affect an individual's well-being or livelihood. The model may produce content that appears factual but may not be accurate. Misuse includes, but is not limited to:
- Prohibited Uses:
- Evaluating or scoring individuals (e.g., in employment, education, credit)
- Critical automated decision-making
- Generating unreliable factual content
- Malicious Activities:
- Spam generation
- Disinformation campaigns
- Harassment or abuse
- Unauthorized surveillance
### License
SmolVLM is built upon [the shape-optimized SigLIP](https://huggingface.co/google/siglip-so400m-patch14-384) as image encoder and [SmolLM2](https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct) for text decoder part.
We release the SmolVLM checkpoints under the Apache 2.0 license.
## Training Details
### Training Data
![Data mixture](mixture_the_cauldron.png)
The training data is: ![Training data](smolvlm-data.pdf)
#### Speeds, Sizes, Times [optional]
TODO
## Evaluation
TODO |