license: apache-2.0
pipeline_tag: sentence-similarity
inference: false
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- mteb
language: en
datasets:
- s2orc
- flax-sentence-embeddings/stackexchange_title_body_jsonl
- flax-sentence-embeddings/stackexchange_titlebody_best_voted_answer_jsonl
- flax-sentence-embeddings/stackexchange_title_best_voted_answer_jsonl
- >-
flax-sentence-embeddings/stackexchange_titlebody_best_and_down_voted_answer_jsonl
- sentence-transformers/reddit-title-body
- msmarco
- gooaq
- yahoo_answers_topics
- code_search_net
- search_qa
- eli5
- snli
- multi_nli
- wikihow
- natural_questions
- trivia_qa
- embedding-data/sentence-compression
- embedding-data/flickr30k-captions
- embedding-data/altlex
- embedding-data/simple-wiki
- embedding-data/QQP
- embedding-data/SPECTER
- embedding-data/PAQ_pairs
- embedding-data/WikiAnswers
- sentence-transformers/embedding-training-data
model-index:
- name: lodestone-base-4096-v1
results:
- task:
type: Classification
dataset:
type: mteb/amazon_counterfactual
name: MTEB AmazonCounterfactualClassification (en)
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 69.7313432835821
- type: ap
value: 31.618259511417733
- type: f1
value: 63.30313825394228
- task:
type: Classification
dataset:
type: mteb/amazon_polarity
name: MTEB AmazonPolarityClassification
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 86.89837499999999
- type: ap
value: 82.39500885672128
- type: f1
value: 86.87317947399657
- task:
type: Classification
dataset:
type: mteb/amazon_reviews_multi
name: MTEB AmazonReviewsClassification (en)
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 44.05
- type: f1
value: 42.67624383248947
- task:
type: Retrieval
dataset:
type: arguana
name: MTEB ArguAna
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.173999999999996
- type: map_at_10
value: 40.976
- type: map_at_100
value: 42.067
- type: map_at_1000
value: 42.075
- type: map_at_3
value: 35.917
- type: map_at_5
value: 38.656
- type: mrr_at_1
value: 26.814
- type: mrr_at_10
value: 41.252
- type: mrr_at_100
value: 42.337
- type: mrr_at_1000
value: 42.345
- type: mrr_at_3
value: 36.226
- type: mrr_at_5
value: 38.914
- type: ndcg_at_1
value: 26.173999999999996
- type: ndcg_at_10
value: 49.819
- type: ndcg_at_100
value: 54.403999999999996
- type: ndcg_at_1000
value: 54.59
- type: ndcg_at_3
value: 39.231
- type: ndcg_at_5
value: 44.189
- type: precision_at_1
value: 26.173999999999996
- type: precision_at_10
value: 7.838000000000001
- type: precision_at_100
value: 0.9820000000000001
- type: precision_at_1000
value: 0.1
- type: precision_at_3
value: 16.287
- type: precision_at_5
value: 12.191
- type: recall_at_1
value: 26.173999999999996
- type: recall_at_10
value: 78.378
- type: recall_at_100
value: 98.222
- type: recall_at_1000
value: 99.644
- type: recall_at_3
value: 48.862
- type: recall_at_5
value: 60.953
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-p2p
name: MTEB ArxivClusteringP2P
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 42.31689035788179
- task:
type: Clustering
dataset:
type: mteb/arxiv-clustering-s2s
name: MTEB ArxivClusteringS2S
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 31.280245136660984
- task:
type: Reranking
dataset:
type: mteb/askubuntudupquestions-reranking
name: MTEB AskUbuntuDupQuestions
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 58.79109720839415
- type: mrr
value: 71.79615705931495
- task:
type: STS
dataset:
type: mteb/biosses-sts
name: MTEB BIOSSES
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 76.44918756608115
- type: cos_sim_spearman
value: 70.86607256286257
- type: euclidean_pearson
value: 74.12154678100815
- type: euclidean_spearman
value: 70.86607256286257
- type: manhattan_pearson
value: 74.0078626964417
- type: manhattan_spearman
value: 70.68353828321327
- task:
type: Classification
dataset:
type: mteb/banking77
name: MTEB Banking77Classification
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 75.40584415584415
- type: f1
value: 74.29514617572676
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-p2p
name: MTEB BiorxivClusteringP2P
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 37.41860080664014
- task:
type: Clustering
dataset:
type: mteb/biorxiv-clustering-s2s
name: MTEB BiorxivClusteringS2S
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 29.319217023090705
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackAndroidRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 26.595000000000002
- type: map_at_10
value: 36.556
- type: map_at_100
value: 37.984
- type: map_at_1000
value: 38.134
- type: map_at_3
value: 33.417
- type: map_at_5
value: 35.160000000000004
- type: mrr_at_1
value: 32.761
- type: mrr_at_10
value: 41.799
- type: mrr_at_100
value: 42.526
- type: mrr_at_1000
value: 42.582
- type: mrr_at_3
value: 39.39
- type: mrr_at_5
value: 40.727000000000004
- type: ndcg_at_1
value: 32.761
- type: ndcg_at_10
value: 42.549
- type: ndcg_at_100
value: 47.915
- type: ndcg_at_1000
value: 50.475
- type: ndcg_at_3
value: 37.93
- type: ndcg_at_5
value: 39.939
- type: precision_at_1
value: 32.761
- type: precision_at_10
value: 8.312
- type: precision_at_100
value: 1.403
- type: precision_at_1000
value: 0.197
- type: precision_at_3
value: 18.741
- type: precision_at_5
value: 13.447999999999999
- type: recall_at_1
value: 26.595000000000002
- type: recall_at_10
value: 54.332
- type: recall_at_100
value: 76.936
- type: recall_at_1000
value: 93.914
- type: recall_at_3
value: 40.666000000000004
- type: recall_at_5
value: 46.513
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackEnglishRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.528000000000002
- type: map_at_10
value: 30.751
- type: map_at_100
value: 31.855
- type: map_at_1000
value: 31.972
- type: map_at_3
value: 28.465
- type: map_at_5
value: 29.738
- type: mrr_at_1
value: 28.662
- type: mrr_at_10
value: 35.912
- type: mrr_at_100
value: 36.726
- type: mrr_at_1000
value: 36.777
- type: mrr_at_3
value: 34.013
- type: mrr_at_5
value: 35.156
- type: ndcg_at_1
value: 28.662
- type: ndcg_at_10
value: 35.452
- type: ndcg_at_100
value: 40.1
- type: ndcg_at_1000
value: 42.323
- type: ndcg_at_3
value: 32.112
- type: ndcg_at_5
value: 33.638
- type: precision_at_1
value: 28.662
- type: precision_at_10
value: 6.688
- type: precision_at_100
value: 1.13
- type: precision_at_1000
value: 0.16
- type: precision_at_3
value: 15.562999999999999
- type: precision_at_5
value: 11.019
- type: recall_at_1
value: 22.528000000000002
- type: recall_at_10
value: 43.748
- type: recall_at_100
value: 64.235
- type: recall_at_1000
value: 78.609
- type: recall_at_3
value: 33.937
- type: recall_at_5
value: 38.234
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGamingRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 33.117999999999995
- type: map_at_10
value: 44.339
- type: map_at_100
value: 45.367000000000004
- type: map_at_1000
value: 45.437
- type: map_at_3
value: 41.195
- type: map_at_5
value: 42.922
- type: mrr_at_1
value: 38.37
- type: mrr_at_10
value: 47.786
- type: mrr_at_100
value: 48.522
- type: mrr_at_1000
value: 48.567
- type: mrr_at_3
value: 45.371
- type: mrr_at_5
value: 46.857
- type: ndcg_at_1
value: 38.37
- type: ndcg_at_10
value: 50.019999999999996
- type: ndcg_at_100
value: 54.36299999999999
- type: ndcg_at_1000
value: 55.897
- type: ndcg_at_3
value: 44.733000000000004
- type: ndcg_at_5
value: 47.292
- type: precision_at_1
value: 38.37
- type: precision_at_10
value: 8.288
- type: precision_at_100
value: 1.139
- type: precision_at_1000
value: 0.132
- type: precision_at_3
value: 20.293
- type: precision_at_5
value: 14.107
- type: recall_at_1
value: 33.117999999999995
- type: recall_at_10
value: 63.451
- type: recall_at_100
value: 82.767
- type: recall_at_1000
value: 93.786
- type: recall_at_3
value: 48.964999999999996
- type: recall_at_5
value: 55.358
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackGisRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 16.028000000000002
- type: map_at_10
value: 23.186999999999998
- type: map_at_100
value: 24.236
- type: map_at_1000
value: 24.337
- type: map_at_3
value: 20.816000000000003
- type: map_at_5
value: 22.311
- type: mrr_at_1
value: 17.514
- type: mrr_at_10
value: 24.84
- type: mrr_at_100
value: 25.838
- type: mrr_at_1000
value: 25.924999999999997
- type: mrr_at_3
value: 22.542
- type: mrr_at_5
value: 24.04
- type: ndcg_at_1
value: 17.514
- type: ndcg_at_10
value: 27.391
- type: ndcg_at_100
value: 32.684999999999995
- type: ndcg_at_1000
value: 35.367
- type: ndcg_at_3
value: 22.820999999999998
- type: ndcg_at_5
value: 25.380999999999997
- type: precision_at_1
value: 17.514
- type: precision_at_10
value: 4.463
- type: precision_at_100
value: 0.745
- type: precision_at_1000
value: 0.101
- type: precision_at_3
value: 10.019
- type: precision_at_5
value: 7.457999999999999
- type: recall_at_1
value: 16.028000000000002
- type: recall_at_10
value: 38.81
- type: recall_at_100
value: 63.295
- type: recall_at_1000
value: 83.762
- type: recall_at_3
value: 26.604
- type: recall_at_5
value: 32.727000000000004
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackMathematicaRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.962
- type: map_at_10
value: 17.218
- type: map_at_100
value: 18.321
- type: map_at_1000
value: 18.455
- type: map_at_3
value: 15.287999999999998
- type: map_at_5
value: 16.417
- type: mrr_at_1
value: 14.677000000000001
- type: mrr_at_10
value: 20.381
- type: mrr_at_100
value: 21.471999999999998
- type: mrr_at_1000
value: 21.566
- type: mrr_at_3
value: 18.448999999999998
- type: mrr_at_5
value: 19.587
- type: ndcg_at_1
value: 14.677000000000001
- type: ndcg_at_10
value: 20.86
- type: ndcg_at_100
value: 26.519
- type: ndcg_at_1000
value: 30.020000000000003
- type: ndcg_at_3
value: 17.208000000000002
- type: ndcg_at_5
value: 19.037000000000003
- type: precision_at_1
value: 14.677000000000001
- type: precision_at_10
value: 3.856
- type: precision_at_100
value: 0.7889999999999999
- type: precision_at_1000
value: 0.124
- type: precision_at_3
value: 8.043
- type: precision_at_5
value: 6.069999999999999
- type: recall_at_1
value: 11.962
- type: recall_at_10
value: 28.994999999999997
- type: recall_at_100
value: 54.071999999999996
- type: recall_at_1000
value: 79.309
- type: recall_at_3
value: 19.134999999999998
- type: recall_at_5
value: 23.727999999999998
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackPhysicsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.764
- type: map_at_10
value: 31.744
- type: map_at_100
value: 33.037
- type: map_at_1000
value: 33.156
- type: map_at_3
value: 29.015
- type: map_at_5
value: 30.434
- type: mrr_at_1
value: 28.296
- type: mrr_at_10
value: 37.03
- type: mrr_at_100
value: 37.902
- type: mrr_at_1000
value: 37.966
- type: mrr_at_3
value: 34.568
- type: mrr_at_5
value: 35.786
- type: ndcg_at_1
value: 28.296
- type: ndcg_at_10
value: 37.289
- type: ndcg_at_100
value: 42.787
- type: ndcg_at_1000
value: 45.382
- type: ndcg_at_3
value: 32.598
- type: ndcg_at_5
value: 34.521
- type: precision_at_1
value: 28.296
- type: precision_at_10
value: 6.901
- type: precision_at_100
value: 1.135
- type: precision_at_1000
value: 0.152
- type: precision_at_3
value: 15.367
- type: precision_at_5
value: 11.03
- type: recall_at_1
value: 22.764
- type: recall_at_10
value: 48.807
- type: recall_at_100
value: 71.859
- type: recall_at_1000
value: 89.606
- type: recall_at_3
value: 35.594
- type: recall_at_5
value: 40.541
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackProgrammersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 19.742
- type: map_at_10
value: 27.741
- type: map_at_100
value: 29.323
- type: map_at_1000
value: 29.438
- type: map_at_3
value: 25.217
- type: map_at_5
value: 26.583000000000002
- type: mrr_at_1
value: 24.657999999999998
- type: mrr_at_10
value: 32.407000000000004
- type: mrr_at_100
value: 33.631
- type: mrr_at_1000
value: 33.686
- type: mrr_at_3
value: 30.194
- type: mrr_at_5
value: 31.444
- type: ndcg_at_1
value: 24.657999999999998
- type: ndcg_at_10
value: 32.614
- type: ndcg_at_100
value: 39.61
- type: ndcg_at_1000
value: 42.114000000000004
- type: ndcg_at_3
value: 28.516000000000002
- type: ndcg_at_5
value: 30.274
- type: precision_at_1
value: 24.657999999999998
- type: precision_at_10
value: 6.176
- type: precision_at_100
value: 1.1400000000000001
- type: precision_at_1000
value: 0.155
- type: precision_at_3
value: 13.927
- type: precision_at_5
value: 9.954
- type: recall_at_1
value: 19.742
- type: recall_at_10
value: 42.427
- type: recall_at_100
value: 72.687
- type: recall_at_1000
value: 89.89
- type: recall_at_3
value: 30.781
- type: recall_at_5
value: 35.606
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackStatsRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 17.582
- type: map_at_10
value: 22.803
- type: map_at_100
value: 23.503
- type: map_at_1000
value: 23.599999999999998
- type: map_at_3
value: 21.375
- type: map_at_5
value: 22.052
- type: mrr_at_1
value: 20.399
- type: mrr_at_10
value: 25.369999999999997
- type: mrr_at_100
value: 26.016000000000002
- type: mrr_at_1000
value: 26.090999999999998
- type: mrr_at_3
value: 23.952
- type: mrr_at_5
value: 24.619
- type: ndcg_at_1
value: 20.399
- type: ndcg_at_10
value: 25.964
- type: ndcg_at_100
value: 29.607
- type: ndcg_at_1000
value: 32.349
- type: ndcg_at_3
value: 23.177
- type: ndcg_at_5
value: 24.276
- type: precision_at_1
value: 20.399
- type: precision_at_10
value: 4.018
- type: precision_at_100
value: 0.629
- type: precision_at_1000
value: 0.093
- type: precision_at_3
value: 9.969
- type: precision_at_5
value: 6.748
- type: recall_at_1
value: 17.582
- type: recall_at_10
value: 33.35
- type: recall_at_100
value: 50.219
- type: recall_at_1000
value: 71.06099999999999
- type: recall_at_3
value: 25.619999999999997
- type: recall_at_5
value: 28.291
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackTexRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 11.071
- type: map_at_10
value: 16.201999999999998
- type: map_at_100
value: 17.112
- type: map_at_1000
value: 17.238
- type: map_at_3
value: 14.508
- type: map_at_5
value: 15.440999999999999
- type: mrr_at_1
value: 13.833
- type: mrr_at_10
value: 19.235
- type: mrr_at_100
value: 20.108999999999998
- type: mrr_at_1000
value: 20.196
- type: mrr_at_3
value: 17.515
- type: mrr_at_5
value: 18.505
- type: ndcg_at_1
value: 13.833
- type: ndcg_at_10
value: 19.643
- type: ndcg_at_100
value: 24.298000000000002
- type: ndcg_at_1000
value: 27.614
- type: ndcg_at_3
value: 16.528000000000002
- type: ndcg_at_5
value: 17.991
- type: precision_at_1
value: 13.833
- type: precision_at_10
value: 3.6990000000000003
- type: precision_at_100
value: 0.713
- type: precision_at_1000
value: 0.116
- type: precision_at_3
value: 7.9030000000000005
- type: precision_at_5
value: 5.891
- type: recall_at_1
value: 11.071
- type: recall_at_10
value: 27.019
- type: recall_at_100
value: 48.404
- type: recall_at_1000
value: 72.641
- type: recall_at_3
value: 18.336
- type: recall_at_5
value: 21.991
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackUnixRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.573
- type: map_at_10
value: 25.008999999999997
- type: map_at_100
value: 26.015
- type: map_at_1000
value: 26.137
- type: map_at_3
value: 22.798
- type: map_at_5
value: 24.092
- type: mrr_at_1
value: 22.108
- type: mrr_at_10
value: 28.646
- type: mrr_at_100
value: 29.477999999999998
- type: mrr_at_1000
value: 29.57
- type: mrr_at_3
value: 26.415
- type: mrr_at_5
value: 27.693
- type: ndcg_at_1
value: 22.108
- type: ndcg_at_10
value: 29.42
- type: ndcg_at_100
value: 34.385
- type: ndcg_at_1000
value: 37.572
- type: ndcg_at_3
value: 25.274
- type: ndcg_at_5
value: 27.315
- type: precision_at_1
value: 22.108
- type: precision_at_10
value: 5.093
- type: precision_at_100
value: 0.859
- type: precision_at_1000
value: 0.124
- type: precision_at_3
value: 11.474
- type: precision_at_5
value: 8.321000000000002
- type: recall_at_1
value: 18.573
- type: recall_at_10
value: 39.433
- type: recall_at_100
value: 61.597
- type: recall_at_1000
value: 84.69
- type: recall_at_3
value: 27.849
- type: recall_at_5
value: 33.202999999999996
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWebmastersRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.807
- type: map_at_10
value: 30.014000000000003
- type: map_at_100
value: 31.422
- type: map_at_1000
value: 31.652
- type: map_at_3
value: 27.447
- type: map_at_5
value: 28.711
- type: mrr_at_1
value: 27.668
- type: mrr_at_10
value: 34.489
- type: mrr_at_100
value: 35.453
- type: mrr_at_1000
value: 35.526
- type: mrr_at_3
value: 32.477000000000004
- type: mrr_at_5
value: 33.603
- type: ndcg_at_1
value: 27.668
- type: ndcg_at_10
value: 34.983
- type: ndcg_at_100
value: 40.535
- type: ndcg_at_1000
value: 43.747
- type: ndcg_at_3
value: 31.026999999999997
- type: ndcg_at_5
value: 32.608
- type: precision_at_1
value: 27.668
- type: precision_at_10
value: 6.837999999999999
- type: precision_at_100
value: 1.411
- type: precision_at_1000
value: 0.23600000000000002
- type: precision_at_3
value: 14.295
- type: precision_at_5
value: 10.435
- type: recall_at_1
value: 22.807
- type: recall_at_10
value: 43.545
- type: recall_at_100
value: 69.39800000000001
- type: recall_at_1000
value: 90.706
- type: recall_at_3
value: 32.183
- type: recall_at_5
value: 36.563
- task:
type: Retrieval
dataset:
type: BeIR/cqadupstack
name: MTEB CQADupstackWordpressRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 13.943
- type: map_at_10
value: 20.419999999999998
- type: map_at_100
value: 21.335
- type: map_at_1000
value: 21.44
- type: map_at_3
value: 17.865000000000002
- type: map_at_5
value: 19.36
- type: mrr_at_1
value: 15.712000000000002
- type: mrr_at_10
value: 22.345000000000002
- type: mrr_at_100
value: 23.227999999999998
- type: mrr_at_1000
value: 23.304
- type: mrr_at_3
value: 19.901
- type: mrr_at_5
value: 21.325
- type: ndcg_at_1
value: 15.712000000000002
- type: ndcg_at_10
value: 24.801000000000002
- type: ndcg_at_100
value: 29.799
- type: ndcg_at_1000
value: 32.513999999999996
- type: ndcg_at_3
value: 19.750999999999998
- type: ndcg_at_5
value: 22.252
- type: precision_at_1
value: 15.712000000000002
- type: precision_at_10
value: 4.1770000000000005
- type: precision_at_100
value: 0.738
- type: precision_at_1000
value: 0.106
- type: precision_at_3
value: 8.688
- type: precision_at_5
value: 6.617000000000001
- type: recall_at_1
value: 13.943
- type: recall_at_10
value: 36.913000000000004
- type: recall_at_100
value: 60.519
- type: recall_at_1000
value: 81.206
- type: recall_at_3
value: 23.006999999999998
- type: recall_at_5
value: 29.082
- task:
type: Retrieval
dataset:
type: climate-fever
name: MTEB ClimateFEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.468
- type: map_at_10
value: 16.029
- type: map_at_100
value: 17.693
- type: map_at_1000
value: 17.886
- type: map_at_3
value: 13.15
- type: map_at_5
value: 14.568
- type: mrr_at_1
value: 21.173000000000002
- type: mrr_at_10
value: 31.028
- type: mrr_at_100
value: 32.061
- type: mrr_at_1000
value: 32.119
- type: mrr_at_3
value: 27.534999999999997
- type: mrr_at_5
value: 29.431
- type: ndcg_at_1
value: 21.173000000000002
- type: ndcg_at_10
value: 23.224
- type: ndcg_at_100
value: 30.225
- type: ndcg_at_1000
value: 33.961000000000006
- type: ndcg_at_3
value: 18.174
- type: ndcg_at_5
value: 19.897000000000002
- type: precision_at_1
value: 21.173000000000002
- type: precision_at_10
value: 7.4719999999999995
- type: precision_at_100
value: 1.5010000000000001
- type: precision_at_1000
value: 0.219
- type: precision_at_3
value: 13.312
- type: precision_at_5
value: 10.619
- type: recall_at_1
value: 9.468
- type: recall_at_10
value: 28.823
- type: recall_at_100
value: 53.26499999999999
- type: recall_at_1000
value: 74.536
- type: recall_at_3
value: 16.672
- type: recall_at_5
value: 21.302
- task:
type: Retrieval
dataset:
type: dbpedia-entity
name: MTEB DBPedia
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 6.343
- type: map_at_10
value: 12.717
- type: map_at_100
value: 16.48
- type: map_at_1000
value: 17.381
- type: map_at_3
value: 9.568999999999999
- type: map_at_5
value: 11.125
- type: mrr_at_1
value: 48.75
- type: mrr_at_10
value: 58.425000000000004
- type: mrr_at_100
value: 59.075
- type: mrr_at_1000
value: 59.095
- type: mrr_at_3
value: 56.291999999999994
- type: mrr_at_5
value: 57.679
- type: ndcg_at_1
value: 37.875
- type: ndcg_at_10
value: 27.77
- type: ndcg_at_100
value: 30.288999999999998
- type: ndcg_at_1000
value: 36.187999999999995
- type: ndcg_at_3
value: 31.385999999999996
- type: ndcg_at_5
value: 29.923
- type: precision_at_1
value: 48.75
- type: precision_at_10
value: 22.375
- type: precision_at_100
value: 6.3420000000000005
- type: precision_at_1000
value: 1.4489999999999998
- type: precision_at_3
value: 35.5
- type: precision_at_5
value: 30.55
- type: recall_at_1
value: 6.343
- type: recall_at_10
value: 16.936
- type: recall_at_100
value: 35.955999999999996
- type: recall_at_1000
value: 55.787
- type: recall_at_3
value: 10.771
- type: recall_at_5
value: 13.669999999999998
- task:
type: Classification
dataset:
type: mteb/emotion
name: MTEB EmotionClassification
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 41.99
- type: f1
value: 36.823402174564954
- task:
type: Retrieval
dataset:
type: fever
name: MTEB FEVER
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 40.088
- type: map_at_10
value: 52.69200000000001
- type: map_at_100
value: 53.296
- type: map_at_1000
value: 53.325
- type: map_at_3
value: 49.905
- type: map_at_5
value: 51.617000000000004
- type: mrr_at_1
value: 43.009
- type: mrr_at_10
value: 56.203
- type: mrr_at_100
value: 56.75
- type: mrr_at_1000
value: 56.769000000000005
- type: mrr_at_3
value: 53.400000000000006
- type: mrr_at_5
value: 55.163
- type: ndcg_at_1
value: 43.009
- type: ndcg_at_10
value: 59.39
- type: ndcg_at_100
value: 62.129999999999995
- type: ndcg_at_1000
value: 62.793
- type: ndcg_at_3
value: 53.878
- type: ndcg_at_5
value: 56.887
- type: precision_at_1
value: 43.009
- type: precision_at_10
value: 8.366
- type: precision_at_100
value: 0.983
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 22.377
- type: precision_at_5
value: 15.035000000000002
- type: recall_at_1
value: 40.088
- type: recall_at_10
value: 76.68700000000001
- type: recall_at_100
value: 88.91
- type: recall_at_1000
value: 93.782
- type: recall_at_3
value: 61.809999999999995
- type: recall_at_5
value: 69.131
- task:
type: Retrieval
dataset:
type: fiqa
name: MTEB FiQA2018
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 10.817
- type: map_at_10
value: 18.9
- type: map_at_100
value: 20.448
- type: map_at_1000
value: 20.660999999999998
- type: map_at_3
value: 15.979
- type: map_at_5
value: 17.415
- type: mrr_at_1
value: 23.148
- type: mrr_at_10
value: 31.208000000000002
- type: mrr_at_100
value: 32.167
- type: mrr_at_1000
value: 32.242
- type: mrr_at_3
value: 28.498
- type: mrr_at_5
value: 29.964000000000002
- type: ndcg_at_1
value: 23.148
- type: ndcg_at_10
value: 25.325999999999997
- type: ndcg_at_100
value: 31.927
- type: ndcg_at_1000
value: 36.081
- type: ndcg_at_3
value: 21.647
- type: ndcg_at_5
value: 22.762999999999998
- type: precision_at_1
value: 23.148
- type: precision_at_10
value: 7.546
- type: precision_at_100
value: 1.415
- type: precision_at_1000
value: 0.216
- type: precision_at_3
value: 14.969
- type: precision_at_5
value: 11.327
- type: recall_at_1
value: 10.817
- type: recall_at_10
value: 32.164
- type: recall_at_100
value: 57.655
- type: recall_at_1000
value: 82.797
- type: recall_at_3
value: 19.709
- type: recall_at_5
value: 24.333
- task:
type: Retrieval
dataset:
type: hotpotqa
name: MTEB HotpotQA
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 25.380999999999997
- type: map_at_10
value: 33.14
- type: map_at_100
value: 33.948
- type: map_at_1000
value: 34.028000000000006
- type: map_at_3
value: 31.019999999999996
- type: map_at_5
value: 32.23
- type: mrr_at_1
value: 50.763000000000005
- type: mrr_at_10
value: 57.899
- type: mrr_at_100
value: 58.426
- type: mrr_at_1000
value: 58.457
- type: mrr_at_3
value: 56.093
- type: mrr_at_5
value: 57.116
- type: ndcg_at_1
value: 50.763000000000005
- type: ndcg_at_10
value: 41.656
- type: ndcg_at_100
value: 45.079
- type: ndcg_at_1000
value: 46.916999999999994
- type: ndcg_at_3
value: 37.834
- type: ndcg_at_5
value: 39.732
- type: precision_at_1
value: 50.763000000000005
- type: precision_at_10
value: 8.648
- type: precision_at_100
value: 1.135
- type: precision_at_1000
value: 0.13799999999999998
- type: precision_at_3
value: 23.105999999999998
- type: precision_at_5
value: 15.363
- type: recall_at_1
value: 25.380999999999997
- type: recall_at_10
value: 43.241
- type: recall_at_100
value: 56.745000000000005
- type: recall_at_1000
value: 69.048
- type: recall_at_3
value: 34.659
- type: recall_at_5
value: 38.406
- task:
type: Classification
dataset:
type: mteb/imdb
name: MTEB ImdbClassification
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 79.544
- type: ap
value: 73.82920133396664
- type: f1
value: 79.51048124883265
- task:
type: Retrieval
dataset:
type: msmarco
name: MTEB MSMARCO
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 11.174000000000001
- type: map_at_10
value: 19.451999999999998
- type: map_at_100
value: 20.612
- type: map_at_1000
value: 20.703
- type: map_at_3
value: 16.444
- type: map_at_5
value: 18.083
- type: mrr_at_1
value: 11.447000000000001
- type: mrr_at_10
value: 19.808
- type: mrr_at_100
value: 20.958
- type: mrr_at_1000
value: 21.041999999999998
- type: mrr_at_3
value: 16.791
- type: mrr_at_5
value: 18.459
- type: ndcg_at_1
value: 11.447000000000001
- type: ndcg_at_10
value: 24.556
- type: ndcg_at_100
value: 30.637999999999998
- type: ndcg_at_1000
value: 33.14
- type: ndcg_at_3
value: 18.325
- type: ndcg_at_5
value: 21.278
- type: precision_at_1
value: 11.447000000000001
- type: precision_at_10
value: 4.215
- type: precision_at_100
value: 0.732
- type: precision_at_1000
value: 0.095
- type: precision_at_3
value: 8.052
- type: precision_at_5
value: 6.318
- type: recall_at_1
value: 11.174000000000001
- type: recall_at_10
value: 40.543
- type: recall_at_100
value: 69.699
- type: recall_at_1000
value: 89.403
- type: recall_at_3
value: 23.442
- type: recall_at_5
value: 30.536
- task:
type: Classification
dataset:
type: mteb/mtop_domain
name: MTEB MTOPDomainClassification (en)
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.6671226630187
- type: f1
value: 89.57660424361246
- task:
type: Classification
dataset:
type: mteb/mtop_intent
name: MTEB MTOPIntentClassification (en)
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 60.284997720018254
- type: f1
value: 40.30637400152823
- task:
type: Classification
dataset:
type: mteb/amazon_massive_intent
name: MTEB MassiveIntentClassification (en)
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.33557498318763
- type: f1
value: 60.24039910680179
- task:
type: Classification
dataset:
type: mteb/amazon_massive_scenario
name: MTEB MassiveScenarioClassification (en)
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.37390719569603
- type: f1
value: 72.33097333477316
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-p2p
name: MTEB MedrxivClusteringP2P
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 34.68158939060552
- task:
type: Clustering
dataset:
type: mteb/medrxiv-clustering-s2s
name: MTEB MedrxivClusteringS2S
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 30.340061711905236
- task:
type: Reranking
dataset:
type: mteb/mind_small
name: MTEB MindSmallReranking
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 32.01814326295803
- type: mrr
value: 33.20555240055367
- task:
type: Retrieval
dataset:
type: nfcorpus
name: MTEB NFCorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.3910000000000005
- type: map_at_10
value: 7.7219999999999995
- type: map_at_100
value: 10.286
- type: map_at_1000
value: 11.668000000000001
- type: map_at_3
value: 5.552
- type: map_at_5
value: 6.468
- type: mrr_at_1
value: 34.365
- type: mrr_at_10
value: 42.555
- type: mrr_at_100
value: 43.295
- type: mrr_at_1000
value: 43.357
- type: mrr_at_3
value: 40.299
- type: mrr_at_5
value: 41.182
- type: ndcg_at_1
value: 31.424000000000003
- type: ndcg_at_10
value: 24.758
- type: ndcg_at_100
value: 23.677999999999997
- type: ndcg_at_1000
value: 33.377
- type: ndcg_at_3
value: 28.302
- type: ndcg_at_5
value: 26.342
- type: precision_at_1
value: 33.437
- type: precision_at_10
value: 19.256999999999998
- type: precision_at_100
value: 6.662999999999999
- type: precision_at_1000
value: 1.9900000000000002
- type: precision_at_3
value: 27.761000000000003
- type: precision_at_5
value: 23.715
- type: recall_at_1
value: 3.3910000000000005
- type: recall_at_10
value: 11.068
- type: recall_at_100
value: 25.878
- type: recall_at_1000
value: 60.19
- type: recall_at_3
value: 6.1690000000000005
- type: recall_at_5
value: 7.767
- task:
type: Retrieval
dataset:
type: nq
name: MTEB NQ
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 15.168000000000001
- type: map_at_10
value: 26.177
- type: map_at_100
value: 27.564
- type: map_at_1000
value: 27.628999999999998
- type: map_at_3
value: 22.03
- type: map_at_5
value: 24.276
- type: mrr_at_1
value: 17.439
- type: mrr_at_10
value: 28.205000000000002
- type: mrr_at_100
value: 29.357
- type: mrr_at_1000
value: 29.408
- type: mrr_at_3
value: 24.377
- type: mrr_at_5
value: 26.540000000000003
- type: ndcg_at_1
value: 17.41
- type: ndcg_at_10
value: 32.936
- type: ndcg_at_100
value: 39.196999999999996
- type: ndcg_at_1000
value: 40.892
- type: ndcg_at_3
value: 24.721
- type: ndcg_at_5
value: 28.615000000000002
- type: precision_at_1
value: 17.41
- type: precision_at_10
value: 6.199000000000001
- type: precision_at_100
value: 0.9690000000000001
- type: precision_at_1000
value: 0.11299999999999999
- type: precision_at_3
value: 11.790000000000001
- type: precision_at_5
value: 9.264
- type: recall_at_1
value: 15.168000000000001
- type: recall_at_10
value: 51.914
- type: recall_at_100
value: 79.804
- type: recall_at_1000
value: 92.75999999999999
- type: recall_at_3
value: 30.212
- type: recall_at_5
value: 39.204
- task:
type: Retrieval
dataset:
type: quora
name: MTEB QuoraRetrieval
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 67.306
- type: map_at_10
value: 80.634
- type: map_at_100
value: 81.349
- type: map_at_1000
value: 81.37299999999999
- type: map_at_3
value: 77.691
- type: map_at_5
value: 79.512
- type: mrr_at_1
value: 77.56
- type: mrr_at_10
value: 84.177
- type: mrr_at_100
value: 84.35000000000001
- type: mrr_at_1000
value: 84.353
- type: mrr_at_3
value: 83.003
- type: mrr_at_5
value: 83.799
- type: ndcg_at_1
value: 77.58
- type: ndcg_at_10
value: 84.782
- type: ndcg_at_100
value: 86.443
- type: ndcg_at_1000
value: 86.654
- type: ndcg_at_3
value: 81.67
- type: ndcg_at_5
value: 83.356
- type: precision_at_1
value: 77.58
- type: precision_at_10
value: 12.875
- type: precision_at_100
value: 1.503
- type: precision_at_1000
value: 0.156
- type: precision_at_3
value: 35.63
- type: precision_at_5
value: 23.483999999999998
- type: recall_at_1
value: 67.306
- type: recall_at_10
value: 92.64
- type: recall_at_100
value: 98.681
- type: recall_at_1000
value: 99.79
- type: recall_at_3
value: 83.682
- type: recall_at_5
value: 88.424
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering
name: MTEB RedditClustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 50.76319866126382
- task:
type: Clustering
dataset:
type: mteb/reddit-clustering-p2p
name: MTEB RedditClusteringP2P
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 55.024711941648995
- task:
type: Retrieval
dataset:
type: scidocs
name: MTEB SCIDOCS
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 3.9379999999999997
- type: map_at_10
value: 8.817
- type: map_at_100
value: 10.546999999999999
- type: map_at_1000
value: 10.852
- type: map_at_3
value: 6.351999999999999
- type: map_at_5
value: 7.453
- type: mrr_at_1
value: 19.400000000000002
- type: mrr_at_10
value: 27.371000000000002
- type: mrr_at_100
value: 28.671999999999997
- type: mrr_at_1000
value: 28.747
- type: mrr_at_3
value: 24.583
- type: mrr_at_5
value: 26.143
- type: ndcg_at_1
value: 19.400000000000002
- type: ndcg_at_10
value: 15.264
- type: ndcg_at_100
value: 22.63
- type: ndcg_at_1000
value: 28.559
- type: ndcg_at_3
value: 14.424999999999999
- type: ndcg_at_5
value: 12.520000000000001
- type: precision_at_1
value: 19.400000000000002
- type: precision_at_10
value: 7.8100000000000005
- type: precision_at_100
value: 1.854
- type: precision_at_1000
value: 0.329
- type: precision_at_3
value: 13.100000000000001
- type: precision_at_5
value: 10.68
- type: recall_at_1
value: 3.9379999999999997
- type: recall_at_10
value: 15.903
- type: recall_at_100
value: 37.645
- type: recall_at_1000
value: 66.86
- type: recall_at_3
value: 7.993
- type: recall_at_5
value: 10.885
- task:
type: STS
dataset:
type: mteb/sickr-sts
name: MTEB SICK-R
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 80.12689060151425
- type: cos_sim_spearman
value: 70.46515535094771
- type: euclidean_pearson
value: 77.17160003557223
- type: euclidean_spearman
value: 70.4651757047438
- type: manhattan_pearson
value: 77.18129609281937
- type: manhattan_spearman
value: 70.46610403752913
- task:
type: STS
dataset:
type: mteb/sts12-sts
name: MTEB STS12
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 70.451157033355
- type: cos_sim_spearman
value: 63.99899601697852
- type: euclidean_pearson
value: 67.46985359967678
- type: euclidean_spearman
value: 64.00001637764805
- type: manhattan_pearson
value: 67.56534741780037
- type: manhattan_spearman
value: 64.06533893575366
- task:
type: STS
dataset:
type: mteb/sts13-sts
name: MTEB STS13
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 77.65086614464292
- type: cos_sim_spearman
value: 78.20169706921848
- type: euclidean_pearson
value: 77.77758172155283
- type: euclidean_spearman
value: 78.20169706921848
- type: manhattan_pearson
value: 77.75077884860052
- type: manhattan_spearman
value: 78.16875216484164
- task:
type: STS
dataset:
type: mteb/sts14-sts
name: MTEB STS14
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 76.26381598259717
- type: cos_sim_spearman
value: 70.78377709313477
- type: euclidean_pearson
value: 74.82646556532096
- type: euclidean_spearman
value: 70.78377658155212
- type: manhattan_pearson
value: 74.81784766108225
- type: manhattan_spearman
value: 70.79351454692176
- task:
type: STS
dataset:
type: mteb/sts15-sts
name: MTEB STS15
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 79.00532026789739
- type: cos_sim_spearman
value: 80.02708383244838
- type: euclidean_pearson
value: 79.48345422610525
- type: euclidean_spearman
value: 80.02708383244838
- type: manhattan_pearson
value: 79.44519739854803
- type: manhattan_spearman
value: 79.98344094559687
- task:
type: STS
dataset:
type: mteb/sts16-sts
name: MTEB STS16
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 77.32783048164805
- type: cos_sim_spearman
value: 78.79729961288045
- type: euclidean_pearson
value: 78.72111945793154
- type: euclidean_spearman
value: 78.79729904606872
- type: manhattan_pearson
value: 78.72464311117116
- type: manhattan_spearman
value: 78.822591248334
- task:
type: STS
dataset:
type: mteb/sts17-crosslingual-sts
name: MTEB STS17 (en-en)
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 82.04318630630854
- type: cos_sim_spearman
value: 83.87886389259836
- type: euclidean_pearson
value: 83.40385877895086
- type: euclidean_spearman
value: 83.87886389259836
- type: manhattan_pearson
value: 83.46337128901547
- type: manhattan_spearman
value: 83.9723106941644
- task:
type: STS
dataset:
type: mteb/sts22-crosslingual-sts
name: MTEB STS22 (en)
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 63.003511169944595
- type: cos_sim_spearman
value: 64.39318805580227
- type: euclidean_pearson
value: 65.4797990735967
- type: euclidean_spearman
value: 64.39318805580227
- type: manhattan_pearson
value: 65.44604544280844
- type: manhattan_spearman
value: 64.38742899984233
- task:
type: STS
dataset:
type: mteb/stsbenchmark-sts
name: MTEB STSBenchmark
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 76.63101237585029
- type: cos_sim_spearman
value: 75.57446967644269
- type: euclidean_pearson
value: 76.93491768734478
- type: euclidean_spearman
value: 75.57446967644269
- type: manhattan_pearson
value: 76.92187567800636
- type: manhattan_spearman
value: 75.57239337194585
- task:
type: Reranking
dataset:
type: mteb/scidocs-reranking
name: MTEB SciDocsRR
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 78.5376604868993
- type: mrr
value: 92.94422897364073
- task:
type: Retrieval
dataset:
type: scifact
name: MTEB SciFact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 38.872
- type: map_at_10
value: 50.417
- type: map_at_100
value: 51.202000000000005
- type: map_at_1000
value: 51.25999999999999
- type: map_at_3
value: 47.02
- type: map_at_5
value: 49.326
- type: mrr_at_1
value: 41
- type: mrr_at_10
value: 51.674
- type: mrr_at_100
value: 52.32599999999999
- type: mrr_at_1000
value: 52.376999999999995
- type: mrr_at_3
value: 48.778
- type: mrr_at_5
value: 50.744
- type: ndcg_at_1
value: 41
- type: ndcg_at_10
value: 56.027
- type: ndcg_at_100
value: 59.362
- type: ndcg_at_1000
value: 60.839
- type: ndcg_at_3
value: 50.019999999999996
- type: ndcg_at_5
value: 53.644999999999996
- type: precision_at_1
value: 41
- type: precision_at_10
value: 8.1
- type: precision_at_100
value: 0.987
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 20.444000000000003
- type: precision_at_5
value: 14.466999999999999
- type: recall_at_1
value: 38.872
- type: recall_at_10
value: 71.906
- type: recall_at_100
value: 86.367
- type: recall_at_1000
value: 98
- type: recall_at_3
value: 56.206
- type: recall_at_5
value: 65.05
- task:
type: PairClassification
dataset:
type: mteb/sprintduplicatequestions-pairclassification
name: MTEB SprintDuplicateQuestions
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.7039603960396
- type: cos_sim_ap
value: 90.40809844250262
- type: cos_sim_f1
value: 84.53181583031557
- type: cos_sim_precision
value: 87.56698821007502
- type: cos_sim_recall
value: 81.69999999999999
- type: dot_accuracy
value: 99.7039603960396
- type: dot_ap
value: 90.40809844250262
- type: dot_f1
value: 84.53181583031557
- type: dot_precision
value: 87.56698821007502
- type: dot_recall
value: 81.69999999999999
- type: euclidean_accuracy
value: 99.7039603960396
- type: euclidean_ap
value: 90.4080982863383
- type: euclidean_f1
value: 84.53181583031557
- type: euclidean_precision
value: 87.56698821007502
- type: euclidean_recall
value: 81.69999999999999
- type: manhattan_accuracy
value: 99.7
- type: manhattan_ap
value: 90.39771161966652
- type: manhattan_f1
value: 84.32989690721648
- type: manhattan_precision
value: 87.02127659574468
- type: manhattan_recall
value: 81.8
- type: max_accuracy
value: 99.7039603960396
- type: max_ap
value: 90.40809844250262
- type: max_f1
value: 84.53181583031557
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering
name: MTEB StackExchangeClustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 59.663210666678715
- task:
type: Clustering
dataset:
type: mteb/stackexchange-clustering-p2p
name: MTEB StackExchangeClusteringP2P
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 32.107791216468776
- task:
type: Reranking
dataset:
type: mteb/stackoverflowdupquestions-reranking
name: MTEB StackOverflowDupQuestions
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 46.440691925067604
- type: mrr
value: 47.03390257618199
- task:
type: Summarization
dataset:
type: mteb/summeval
name: MTEB SummEval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 31.067177519784074
- type: cos_sim_spearman
value: 31.234728424648967
- type: dot_pearson
value: 31.06717083018107
- type: dot_spearman
value: 31.234728424648967
- task:
type: Retrieval
dataset:
type: trec-covid
name: MTEB TRECCOVID
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.136
- type: map_at_10
value: 0.767
- type: map_at_100
value: 3.3689999999999998
- type: map_at_1000
value: 8.613999999999999
- type: map_at_3
value: 0.369
- type: map_at_5
value: 0.514
- type: mrr_at_1
value: 48
- type: mrr_at_10
value: 63.908
- type: mrr_at_100
value: 64.615
- type: mrr_at_1000
value: 64.615
- type: mrr_at_3
value: 62
- type: mrr_at_5
value: 63.4
- type: ndcg_at_1
value: 44
- type: ndcg_at_10
value: 38.579
- type: ndcg_at_100
value: 26.409
- type: ndcg_at_1000
value: 26.858999999999998
- type: ndcg_at_3
value: 47.134
- type: ndcg_at_5
value: 43.287
- type: precision_at_1
value: 48
- type: precision_at_10
value: 40.400000000000006
- type: precision_at_100
value: 26.640000000000004
- type: precision_at_1000
value: 12.04
- type: precision_at_3
value: 52.666999999999994
- type: precision_at_5
value: 46.800000000000004
- type: recall_at_1
value: 0.136
- type: recall_at_10
value: 1.0070000000000001
- type: recall_at_100
value: 6.318
- type: recall_at_1000
value: 26.522000000000002
- type: recall_at_3
value: 0.41700000000000004
- type: recall_at_5
value: 0.606
- task:
type: Retrieval
dataset:
type: webis-touche2020
name: MTEB Touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 1.9949999999999999
- type: map_at_10
value: 8.304
- type: map_at_100
value: 13.644
- type: map_at_1000
value: 15.43
- type: map_at_3
value: 4.788
- type: map_at_5
value: 6.22
- type: mrr_at_1
value: 22.448999999999998
- type: mrr_at_10
value: 37.658
- type: mrr_at_100
value: 38.491
- type: mrr_at_1000
value: 38.503
- type: mrr_at_3
value: 32.312999999999995
- type: mrr_at_5
value: 35.68
- type: ndcg_at_1
value: 21.429000000000002
- type: ndcg_at_10
value: 18.995
- type: ndcg_at_100
value: 32.029999999999994
- type: ndcg_at_1000
value: 44.852
- type: ndcg_at_3
value: 19.464000000000002
- type: ndcg_at_5
value: 19.172
- type: precision_at_1
value: 22.448999999999998
- type: precision_at_10
value: 17.143
- type: precision_at_100
value: 6.877999999999999
- type: precision_at_1000
value: 1.524
- type: precision_at_3
value: 21.769
- type: precision_at_5
value: 20
- type: recall_at_1
value: 1.9949999999999999
- type: recall_at_10
value: 13.395999999999999
- type: recall_at_100
value: 44.348
- type: recall_at_1000
value: 82.622
- type: recall_at_3
value: 5.896
- type: recall_at_5
value: 8.554
- task:
type: Classification
dataset:
type: mteb/toxic_conversations_50k
name: MTEB ToxicConversationsClassification
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 67.9394
- type: ap
value: 12.943337263423334
- type: f1
value: 52.28243093094156
- task:
type: Classification
dataset:
type: mteb/tweet_sentiment_extraction
name: MTEB TweetSentimentExtractionClassification
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 56.414827391058296
- type: f1
value: 56.666412409573105
- task:
type: Clustering
dataset:
type: mteb/twentynewsgroups-clustering
name: MTEB TwentyNewsgroupsClustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 47.009746255495465
- task:
type: PairClassification
dataset:
type: mteb/twittersemeval2015-pairclassification
name: MTEB TwitterSemEval2015
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 84.02574953805807
- type: cos_sim_ap
value: 67.66599910763128
- type: cos_sim_f1
value: 63.491277990844985
- type: cos_sim_precision
value: 59.77172140694154
- type: cos_sim_recall
value: 67.70448548812665
- type: dot_accuracy
value: 84.02574953805807
- type: dot_ap
value: 67.66600090945406
- type: dot_f1
value: 63.491277990844985
- type: dot_precision
value: 59.77172140694154
- type: dot_recall
value: 67.70448548812665
- type: euclidean_accuracy
value: 84.02574953805807
- type: euclidean_ap
value: 67.6659842364448
- type: euclidean_f1
value: 63.491277990844985
- type: euclidean_precision
value: 59.77172140694154
- type: euclidean_recall
value: 67.70448548812665
- type: manhattan_accuracy
value: 84.0317100792752
- type: manhattan_ap
value: 67.66351692448987
- type: manhattan_f1
value: 63.48610948306178
- type: manhattan_precision
value: 57.11875131828729
- type: manhattan_recall
value: 71.45118733509234
- type: max_accuracy
value: 84.0317100792752
- type: max_ap
value: 67.66600090945406
- type: max_f1
value: 63.491277990844985
- task:
type: PairClassification
dataset:
type: mteb/twitterurlcorpus-pairclassification
name: MTEB TwitterURLCorpus
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 87.53832421314084
- type: cos_sim_ap
value: 83.11416594316626
- type: cos_sim_f1
value: 75.41118114347518
- type: cos_sim_precision
value: 73.12839059674504
- type: cos_sim_recall
value: 77.8410840776101
- type: dot_accuracy
value: 87.53832421314084
- type: dot_ap
value: 83.11416226342155
- type: dot_f1
value: 75.41118114347518
- type: dot_precision
value: 73.12839059674504
- type: dot_recall
value: 77.8410840776101
- type: euclidean_accuracy
value: 87.53832421314084
- type: euclidean_ap
value: 83.11416284455395
- type: euclidean_f1
value: 75.41118114347518
- type: euclidean_precision
value: 73.12839059674504
- type: euclidean_recall
value: 77.8410840776101
- type: manhattan_accuracy
value: 87.49369348391353
- type: manhattan_ap
value: 83.08066812574694
- type: manhattan_f1
value: 75.36561228603892
- type: manhattan_precision
value: 71.9202518363064
- type: manhattan_recall
value: 79.15768401601478
- type: max_accuracy
value: 87.53832421314084
- type: max_ap
value: 83.11416594316626
- type: max_f1
value: 75.41118114347518
lodestone-base-4096-v1
Hum-Works/lodestone-base-4096-v1. Griffin McCauley, Will Fortin, Dylan DiGioia 2023
This new sentence-transformers model from Hum maps long sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Abstract
In the hopes of furthering Hum's overarching mission of increasing the accessibility and interconnectivity of human knowledge, this model was developed as part of a project intending to boost the maximum input sequence length of sentence embedding models by leveraging recent architectural advances in the design of transformer models such as the incorporation of FlashAttention, Attention with Linear Biases (ALiBi), and Gated Linear Units (GLU). These modifications and enhancements were implemented by the team at MosaicML who designed and constructed the pre-trained mosaic-bert-base-seqlen-2048
model, and more information regarding the details of their development and testing specifications can be found on the model card.
While the fine-tuning procedure followed during the course of this project loosely mirrors that of the of the original Flax-sentence-embeddings team responsible for the creation of many other popular sentence-transformers models (e.g. all-mpnet-base-v2, all-distilroberta-v1, and all-MiniLM-L6-v2), our methodology includes novel techniques for data loading, batch sampling, and model checkpointing intended to improve training efficiency with regards to memory allocation and data storage.
Through combining these well-established and proven fine-tuning practices with novel advances in transformer architectural elements, our lodestone-base-4096-v1
model is able to achieve comparable performance metrics on standard text embedding evaluation benchmarks while also supporting a longer and more robust input sequence length of 4096 while retaining a smaller, more manageable size capable of being run on either a GPU or CPU.
Usage
Using this model becomes relatively easy when you have sentence-transformers installed. At the time of publishing, sentence-transformers does not support remote code which is required for flash-attention used by the model. A fork of the sentence-transformers repository that allows remote code execution is provided for convenience. It can be installed using the following command:
pip install git+https://github.com/Hum-Works/sentence-transformers.git
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
model = SentenceTransformer('Hum-Works/lodestone-base-4096-v1', trust_remote_code=True, revision='v1.0.0')
sentences = ["This is an example sentence", "Each sentence is converted"]
embeddings = model.encode(sentences)
print(embeddings)
Note: The model will use the openAI/Triton implementation of FlashAttention if installed. This is more performant than the fallback, torch implementation. Some platforms and GPUs may not be supported by Triton - up to date compatibility can be found on Triton’s github page.
Background
The project aims to train sentence embedding models on very large sentence level datasets using a self-supervised contrastive learning objective. We used the pretrained mosaic-bert-base-seqlen-2048
model and fine-tuned it on a nearly 1.5B sentence pairs dataset. We use a contrastive learning objective: given a sentence from the pair, the model should predict which out of a set of randomly sampled other sentences, was actually paired with it in our dataset.
Intended uses
Our model is intended to be used as a long sentence and paragraph encoder. Given an input text, it outputs a vector containing the semantic information. The sentence vector may be used for information retrieval, clustering, or sentence similarity tasks.
Training procedure
Pre-training
We use the pretrained mosaic-bert-base-seqlen-2048
. Please refer to the model card for more detailed information about the pre-training procedure.
Fine-tuning
We fine-tune the model using a contrastive objective. Formally, we compute the dot product of each possible sentence pairing in the batch. We then apply the cross entropy loss by comparing with true pairs.
Hyperparameters
We trained our model on an ml.g5.4xlarge EC2 instance with 1 NVIDIA A10G Tensor Core GPU. We train the model during 1.4 million steps using a batch size of 16. We use a learning rate warm up of 500. The sequence length during training was limited to 2048 tokens. We used the AdamW optimizer with a 2e-5 learning rate and weight decay of 0.01 (i.e. the default parameter values for SentenceTransformer.fit()). The full training script is accessible in this current repository: Training.py
.
Model Architecture
By incorporating FlashAttention, Attention with Linear Biases (ALiBi), and Gated Linear Units (GLU), this model is able to handle input sequences of 4096, 8x longer than that supported by most comparable sentence embedding models. The model was trained using a sequence length maximum of 2048, but the final model has a maximum sequence length of 4096. This is accomplished by taking advantage of ALiBi’s positional attention extrapolation which has been shown to allow sequence lengths of 2x the initial trained length.
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 4096, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
(2): Normalize()
)
Training data
We use the concatenation from multiple datasets to fine-tune our model. The total number of sentence pairs is nearly 1.5 billion sentences. We sampled each dataset given a weighted probability proportional to its relative contribution to the entire dataset.
The breakdown of the dataset can be seen below, and the entire dataset can be publicly accessed and uploaded via the Dataloading.ipynb
located within this repository.
Dataset | Paper | Number of training tuples |
---|---|---|
Reddit comments (2015-2018) | paper | 726,484,430 |
S2ORC Citation pairs (Abstracts) | paper | 252,102,397 |
Reddit posts (Title, Body) pairs | - | 127,445,911 |
Amazon reviews (2018) (Title, Review) pairs | - | 87,877,725 |
WikiAnswers Duplicate question pairs | paper | 77,427,422 |
PAQ (Question, Answer) pairs | paper | 64,371,441 |
S2ORC Citation pairs (Titles) | paper | 52,603,982 |
S2ORC (Title, Abstract) | paper | 41,769,185 |
Stack Exchange (Title, Body) pairs | - | 25,368,423 |
MS MARCO triplets | paper | 9,144,553 |
Stack Exchange (Title, Most Upvoted Answer) pairs | - | 4,784,250 |
Stack Exchange (Title+Body, Most Upvoted Answer) pairs | - | 4,551,660 |
GOOAQ: Open Question Answering with Diverse Answer Types | paper | 3,012,496 |
Amazon QA | - | 2,507,114 |
Code Search | - | 1,375,067 |
Yahoo Answers (Title, Answer) | paper | 1,198,260 |
[AG News]((Title, Description) pairs of news articles from the AG News dataset) | - | 1,157,745 |
COCO Image captions | paper | 828,395 |
SPECTER citation triplets | paper | 684,100 |
Yahoo Answers (Question, Answer) | paper | 681,164 |
Yahoo Answers (Title, Question) | paper | 659,896 |
CC News (Title, article) pairs | - | 614,664 |
NPR (Title, Body) pairs | - | 594,384 |
SearchQA | paper | 582,261 |
MS Marco (Query, Answer Passage) pairs | paper | 532,751 |
Stack Exchange (Title, Body) pairs | - | 364,000 |
Eli5 | paper | 325,475 |
Flickr 30k | paper | 317,695 |
CNN & DailyMail (highlight sentences, article) pairs | - | 311,971 |
Stack Exchange Duplicate questions (titles) | - | 304,524 |
AllNLI (SNLI and MultiNLI | paper SNLI, paper MultiNLI | 277,230 |
Stack Exchange Duplicate questions (bodies) | - | 250,518 |
Stack Exchange Duplicate questions (titles+bodies) | - | 250,459 |
XSUM (Summary, News Article) pairs | - | 226,711 |
Stack Exchange (Title+Body, Most Upvoted Answer, Most Downvoted Answer) triplets | - | 216,454 |
Sentence Compression | paper | 180,000 |
FEVER training data | - | 139,051 |
Wikihow | paper | 128,542 |
SearchQA (Question, Top-Snippet) | paper | 117,384 |
Altlex | paper | 112,696 |
Quora Question Duplicates | - | 103,663 |
Quora Question Triplets | - | 103,663 |
Simple Wikipedia | paper | 102,225 |
Natural Questions (NQ) | paper | 100,231 |
SQuAD2.0 | paper | 87,599 |
TriviaQA | - | 73,346 |
Total | 1,492,453,113 |
Replication
The entire fine-tuning process for this model can be replicated by following the steps outlined in the Replication.txt
file within this repository. This document explains how to modify the sentence-transformers library, configure the pre-trained mosaic-bert-base-seqlen-2048
model, load all of the training data, and execute the training script.
Limitations
Due to technical constraints (e.g. limited GPU memory capacity), this model was trained with a smaller batch size of 16, making it so that each step during training was less well-informed than it would have been on a higher performance system. This smaller than ideal hyperparameter value will generally cause the model to be more likely to get stuck in a local minimum and for the parameter configuration to take a longer time to converge to the optimum. In order to counteract this potential risk, we trained the model for a larger number of steps than many of its contemporaries to ensure a greater chance of achieving strong performance, but this is an area which could be improved if further fine-tuning was performed.
It is also worth noting that, while this model is able to handle longer input sequences of up to 4096 word pieces, the training dataset used consists of sentence and paragraph pairs and triplets which do not necessarily reach that maximum sequence length. Since the data was not tailored specifically for this larger input size, further fine-tuning may be required to ensure highly accurate embeddings for longer texts of that magnitude.
Finally, as stated on https://huggingface.co/datasets/sentence-transformers/reddit-title-body, an additional reminder and warning regarding the Reddit posts data is that one should "Be aware that this dataset is not filtered for biases, hate-speech, spam, racial slurs etc. It depicts the content as it is posted on Reddit." Thus, while we believe this has not induced any pathological behaviors in the model's performance due to its relatively low prevalence of records in the whole dataset of nearly 1.5B sentence pairs and the fact that this model was trained to produce semantic embeddings rather than generative text outputs, it is always important to be aware of vulnerabilities to bias.