File size: 2,828 Bytes
75575ac 87dcc80 75575ac 87dcc80 75575ac 87dcc80 75575ac 87dcc80 75575ac 87dcc80 75575ac 87dcc80 75575ac 87dcc80 75575ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 |
---
library_name: stable-baselines3
tags:
- seals/Ant-v0
- deep-reinforcement-learning
- reinforcement-learning
- stable-baselines3
model-index:
- name: PPO
results:
- metrics:
- type: mean_reward
value: 3034.50 +/- 1124.70
name: mean_reward
task:
type: reinforcement-learning
name: reinforcement-learning
dataset:
name: seals/Ant-v0
type: seals/Ant-v0
---
# **PPO** Agent playing **seals/Ant-v0**
This is a trained model of a **PPO** agent playing **seals/Ant-v0**
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3)
and the [RL Zoo](https://github.com/DLR-RM/rl-baselines3-zoo).
The RL Zoo is a training framework for Stable Baselines3
reinforcement learning agents,
with hyperparameter optimization and pre-trained agents included.
## Usage (with SB3 RL Zoo)
RL Zoo: https://github.com/DLR-RM/rl-baselines3-zoo<br/>
SB3: https://github.com/DLR-RM/stable-baselines3<br/>
SB3 Contrib: https://github.com/Stable-Baselines-Team/stable-baselines3-contrib
```
# Download model and save it into the logs/ folder
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga HumanCompatibleAI -f logs/
python enjoy.py --algo ppo --env seals/Ant-v0 -f logs/
```
If you installed the RL Zoo3 via pip (`pip install rl_zoo3`), from anywhere you can do:
```
python -m rl_zoo3.load_from_hub --algo ppo --env seals/Ant-v0 -orga HumanCompatibleAI -f logs/
rl_zoo3 enjoy --algo ppo --env seals/Ant-v0 -f logs/
```
## Training (with the RL Zoo)
```
python train.py --algo ppo --env seals/Ant-v0 -f logs/
# Upload the model and generate video (when possible)
python -m rl_zoo3.push_to_hub --algo ppo --env seals/Ant-v0 -f logs/ -orga HumanCompatibleAI
```
## Hyperparameters
```python
OrderedDict([('batch_size', 16),
('clip_range', 0.3),
('ent_coef', 3.1441389214159857e-06),
('gae_lambda', 0.8),
('gamma', 0.995),
('learning_rate', 0.00017959211641976886),
('max_grad_norm', 0.9),
('n_epochs', 10),
('n_steps', 2048),
('n_timesteps', 1000000.0),
('normalize',
{'gamma': 0.995, 'norm_obs': False, 'norm_reward': True}),
('policy', 'MlpPolicy'),
('policy_kwargs',
{'activation_fn': <class 'torch.nn.modules.activation.Tanh'>,
'features_extractor_class': <class 'imitation.policies.base.NormalizeFeaturesExtractor'>,
'net_arch': [{'pi': [64, 64], 'vf': [64, 64]}]}),
('vf_coef', 0.4351450387648799),
('normalize_kwargs',
{'norm_obs': {'gamma': 0.995,
'norm_obs': False,
'norm_reward': True},
'norm_reward': False})])
```
|