SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L6-v2
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
- Language: en
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Husain/ramdam_fingerprint_embedding_model")
# Run inference
sentences = [
'A cat is on a robot.',
'A man is eating bread.',
'A woman is pouring eyes into a bowl.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9187 |
spearman_cosine | 0.9276 |
pearson_manhattan | 0.8991 |
spearman_manhattan | 0.9321 |
pearson_euclidean | 0.9015 |
spearman_euclidean | 0.929 |
pearson_dot | 0.8789 |
spearman_dot | 0.8957 |
pearson_max | 0.9187 |
spearman_max | 0.9321 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 101 training samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 101 samples:
sentence1 sentence2 score type string string float details - min: 7 tokens
- mean: 9.44 tokens
- max: 14 tokens
- min: 3 tokens
- mean: 9.46 tokens
- max: 15 tokens
- min: 0.1
- mean: 0.66
- max: 1.0
- Samples:
sentence1 sentence2 score A plane is taking off.
An air plane is taking off.
1.0
A man is playing a large flute.
A man is playing a flute.
0.76
A man is spreading shreded cheese on a pizza.
A man is spreading shredded cheese on an uncooked pizza.
0.76
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
stsb
- Dataset: stsb at ab7a5ac
- Size: 1,500 evaluation samples
- Columns:
sentence1
,sentence2
, andscore
- Approximate statistics based on the first 1000 samples:
sentence1 sentence2 score type string string float details - min: 6 tokens
- mean: 9.35 tokens
- max: 13 tokens
- min: 7 tokens
- mean: 9.9 tokens
- max: 16 tokens
- min: 0.0
- mean: 0.39
- max: 1.0
- Samples:
sentence1 sentence2 score A woman is riding on a horse.
A man is turning over tables in anger.
0.0
A man is screwing wood to a wall.
A man is giving a woman a massage.
0.04
A girl is playing a flute.
A girl plays a wind instrument.
0.64
- Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepslearning_rate
: 2e-05num_train_epochs
: 10warmup_ratio
: 0.1save_only_model
: Trueseed
: 33fp16
: Trueload_best_model_at_end
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 8per_device_eval_batch_size
: 8per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 10max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Truerestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 33data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseeval_use_gather_object
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | loss | sts-dev_spearman_cosine |
---|---|---|---|
0.1538 | 2 | 4.4641 | 0.9366 |
0.3077 | 4 | 4.4652 | 0.9366 |
0.4615 | 6 | 4.4719 | 0.9366 |
0.6154 | 8 | 4.4903 | 0.9366 |
0.7692 | 10 | 4.5264 | 0.9373 |
0.9231 | 12 | 4.5954 | 0.9339 |
1.0769 | 14 | 4.6832 | 0.9328 |
1.2308 | 16 | 4.7534 | 0.9289 |
1.3846 | 18 | 4.8155 | 0.9281 |
1.5385 | 20 | 4.8788 | 0.9269 |
1.6923 | 22 | 4.9350 | 0.9272 |
1.8462 | 24 | 4.9789 | 0.9239 |
2.0 | 26 | 5.0132 | 0.9230 |
2.1538 | 28 | 5.0636 | 0.9237 |
2.3077 | 30 | 5.1068 | 0.9202 |
2.4615 | 32 | 5.1460 | 0.9172 |
2.6154 | 34 | 5.1602 | 0.9164 |
2.7692 | 36 | 5.1493 | 0.9210 |
2.9231 | 38 | 5.1399 | 0.9200 |
3.0769 | 40 | 5.1342 | 0.9235 |
3.2308 | 42 | 5.1413 | 0.9258 |
3.3846 | 44 | 5.1440 | 0.9271 |
3.5385 | 46 | 5.1583 | 0.9311 |
3.6923 | 48 | 5.1664 | 0.9293 |
3.8462 | 50 | 5.1682 | 0.9293 |
4.0 | 52 | 5.1617 | 0.9293 |
4.1538 | 54 | 5.1543 | 0.9293 |
4.3077 | 56 | 5.1480 | 0.9293 |
4.4615 | 58 | 5.1428 | 0.9291 |
4.6154 | 60 | 5.1292 | 0.9298 |
4.7692 | 62 | 5.1271 | 0.9276 |
4.9231 | 64 | 5.1133 | 0.9276 |
5.0769 | 66 | 5.0928 | 0.9270 |
5.2308 | 68 | 5.0874 | 0.9270 |
5.3846 | 70 | 5.0755 | 0.9270 |
5.5385 | 72 | 5.0665 | 0.9270 |
5.6923 | 74 | 5.0676 | 0.9293 |
5.8462 | 76 | 5.0747 | 0.9293 |
6.0 | 78 | 5.0647 | 0.9295 |
6.1538 | 80 | 5.0763 | 0.9273 |
6.3077 | 82 | 5.0832 | 0.9272 |
6.4615 | 84 | 5.0750 | 0.9289 |
6.6154 | 86 | 5.0547 | 0.9289 |
6.7692 | 88 | 5.0350 | 0.9308 |
6.9231 | 90 | 5.0221 | 0.9308 |
7.0769 | 92 | 5.0107 | 0.9308 |
7.2308 | 94 | 4.9967 | 0.9297 |
7.3846 | 96 | 4.9983 | 0.9297 |
7.5385 | 98 | 5.0026 | 0.9277 |
7.6923 | 100 | 5.0095 | 0.9277 |
7.8462 | 102 | 5.0102 | 0.9277 |
8.0 | 104 | 5.0055 | 0.9271 |
8.1538 | 106 | 5.0031 | 0.9271 |
8.3077 | 108 | 4.9976 | 0.9271 |
8.4615 | 110 | 4.9941 | 0.9271 |
8.6154 | 112 | 4.9856 | 0.9276 |
8.7692 | 114 | 4.9821 | 0.9276 |
8.9231 | 116 | 4.9782 | 0.9276 |
9.0769 | 118 | 4.9706 | 0.9276 |
9.2308 | 120 | 4.9646 | 0.9276 |
9.3846 | 122 | 4.9584 | 0.9276 |
9.5385 | 124 | 4.9537 | 0.9276 |
9.6923 | 126 | 4.9499 | 0.9276 |
9.8462 | 128 | 4.9485 | 0.9276 |
10.0 | 130 | 4.9463 | 0.9276 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.8.10
- Sentence Transformers: 3.1.0
- Transformers: 4.44.2
- PyTorch: 2.3.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.0
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 5
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for Husain/ramdam_fingerprint_embedding_model
Base model
sentence-transformers/all-MiniLM-L6-v2Dataset used to train Husain/ramdam_fingerprint_embedding_model
Evaluation results
- Pearson Cosine on sts devself-reported0.919
- Spearman Cosine on sts devself-reported0.928
- Pearson Manhattan on sts devself-reported0.899
- Spearman Manhattan on sts devself-reported0.932
- Pearson Euclidean on sts devself-reported0.901
- Spearman Euclidean on sts devself-reported0.929
- Pearson Dot on sts devself-reported0.879
- Spearman Dot on sts devself-reported0.896
- Pearson Max on sts devself-reported0.919
- Spearman Max on sts devself-reported0.932