Husain commited on
Commit
31a3b85
1 Parent(s): afb5a59

Add new SentenceTransformer model.

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 384,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,522 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: sentence-transformers/all-MiniLM-L6-v2
3
+ datasets:
4
+ - sentence-transformers/stsb
5
+ language:
6
+ - en
7
+ library_name: sentence-transformers
8
+ metrics:
9
+ - pearson_cosine
10
+ - spearman_cosine
11
+ - pearson_manhattan
12
+ - spearman_manhattan
13
+ - pearson_euclidean
14
+ - spearman_euclidean
15
+ - pearson_dot
16
+ - spearman_dot
17
+ - pearson_max
18
+ - spearman_max
19
+ pipeline_tag: sentence-similarity
20
+ tags:
21
+ - sentence-transformers
22
+ - sentence-similarity
23
+ - feature-extraction
24
+ - generated_from_trainer
25
+ - dataset_size:101
26
+ - loss:CoSENTLoss
27
+ widget:
28
+ - source_sentence: The man is slicing a potato.
29
+ sentences:
30
+ - A woman is slicing carrot.
31
+ - Two women are singing.
32
+ - A man is slicing potato.
33
+ - source_sentence: A girl is playing a flute.
34
+ sentences:
35
+ - A woman stirs eggs in a bowl.
36
+ - A girl plays a wind instrument.
37
+ - A man is turning over tables in anger.
38
+ - source_sentence: People are playing baseball.
39
+ sentences:
40
+ - The cricket player hit the ball.
41
+ - A man breaks a stick.
42
+ - A woman is pouring a yellow mixture on a frying pan.
43
+ - source_sentence: A woman and man are riding in a car.
44
+ sentences:
45
+ - A woman driving a car is talking to the man seated beside her.
46
+ - A woman is placing skewered food onto a cooker.
47
+ - The man and woman are walking.
48
+ - source_sentence: A cat is on a robot.
49
+ sentences:
50
+ - A man is eating bread.
51
+ - A woman is pouring eyes into a bowl.
52
+ - A boy sits on a bed, sings and plays a guitar.
53
+ model-index:
54
+ - name: SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
55
+ results:
56
+ - task:
57
+ type: semantic-similarity
58
+ name: Semantic Similarity
59
+ dataset:
60
+ name: sts dev
61
+ type: sts-dev
62
+ metrics:
63
+ - type: pearson_cosine
64
+ value: 0.9186522039312566
65
+ name: Pearson Cosine
66
+ - type: spearman_cosine
67
+ value: 0.9276278198564623
68
+ name: Spearman Cosine
69
+ - type: pearson_manhattan
70
+ value: 0.8991493568260668
71
+ name: Pearson Manhattan
72
+ - type: spearman_manhattan
73
+ value: 0.9320766471557739
74
+ name: Spearman Manhattan
75
+ - type: pearson_euclidean
76
+ value: 0.9014580823459483
77
+ name: Pearson Euclidean
78
+ - type: spearman_euclidean
79
+ value: 0.9289530024562572
80
+ name: Spearman Euclidean
81
+ - type: pearson_dot
82
+ value: 0.8789190604301875
83
+ name: Pearson Dot
84
+ - type: spearman_dot
85
+ value: 0.8957287815613981
86
+ name: Spearman Dot
87
+ - type: pearson_max
88
+ value: 0.9186522039312566
89
+ name: Pearson Max
90
+ - type: spearman_max
91
+ value: 0.9320766471557739
92
+ name: Spearman Max
93
+ ---
94
+
95
+ # SentenceTransformer based on sentence-transformers/all-MiniLM-L6-v2
96
+
97
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
98
+
99
+ ## Model Details
100
+
101
+ ### Model Description
102
+ - **Model Type:** Sentence Transformer
103
+ - **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision 8b3219a92973c328a8e22fadcfa821b5dc75636a -->
104
+ - **Maximum Sequence Length:** 512 tokens
105
+ - **Output Dimensionality:** 384 tokens
106
+ - **Similarity Function:** Cosine Similarity
107
+ <!-- - **Training Dataset:** Unknown -->
108
+ - **Language:** en
109
+ <!-- - **License:** Unknown -->
110
+
111
+ ### Model Sources
112
+
113
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
114
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
115
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
116
+
117
+ ### Full Model Architecture
118
+
119
+ ```
120
+ SentenceTransformer(
121
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
122
+ (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
123
+ )
124
+ ```
125
+
126
+ ## Usage
127
+
128
+ ### Direct Usage (Sentence Transformers)
129
+
130
+ First install the Sentence Transformers library:
131
+
132
+ ```bash
133
+ pip install -U sentence-transformers
134
+ ```
135
+
136
+ Then you can load this model and run inference.
137
+ ```python
138
+ from sentence_transformers import SentenceTransformer
139
+
140
+ # Download from the 🤗 Hub
141
+ model = SentenceTransformer("Husain/ramdam_fingerprint_embedding_model")
142
+ # Run inference
143
+ sentences = [
144
+ 'A cat is on a robot.',
145
+ 'A man is eating bread.',
146
+ 'A woman is pouring eyes into a bowl.',
147
+ ]
148
+ embeddings = model.encode(sentences)
149
+ print(embeddings.shape)
150
+ # [3, 384]
151
+
152
+ # Get the similarity scores for the embeddings
153
+ similarities = model.similarity(embeddings, embeddings)
154
+ print(similarities.shape)
155
+ # [3, 3]
156
+ ```
157
+
158
+ <!--
159
+ ### Direct Usage (Transformers)
160
+
161
+ <details><summary>Click to see the direct usage in Transformers</summary>
162
+
163
+ </details>
164
+ -->
165
+
166
+ <!--
167
+ ### Downstream Usage (Sentence Transformers)
168
+
169
+ You can finetune this model on your own dataset.
170
+
171
+ <details><summary>Click to expand</summary>
172
+
173
+ </details>
174
+ -->
175
+
176
+ <!--
177
+ ### Out-of-Scope Use
178
+
179
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
180
+ -->
181
+
182
+ ## Evaluation
183
+
184
+ ### Metrics
185
+
186
+ #### Semantic Similarity
187
+ * Dataset: `sts-dev`
188
+ * Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
189
+
190
+ | Metric | Value |
191
+ |:--------------------|:-----------|
192
+ | pearson_cosine | 0.9187 |
193
+ | **spearman_cosine** | **0.9276** |
194
+ | pearson_manhattan | 0.8991 |
195
+ | spearman_manhattan | 0.9321 |
196
+ | pearson_euclidean | 0.9015 |
197
+ | spearman_euclidean | 0.929 |
198
+ | pearson_dot | 0.8789 |
199
+ | spearman_dot | 0.8957 |
200
+ | pearson_max | 0.9187 |
201
+ | spearman_max | 0.9321 |
202
+
203
+ <!--
204
+ ## Bias, Risks and Limitations
205
+
206
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
207
+ -->
208
+
209
+ <!--
210
+ ### Recommendations
211
+
212
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
213
+ -->
214
+
215
+ ## Training Details
216
+
217
+ ### Training Dataset
218
+
219
+ #### Unnamed Dataset
220
+
221
+
222
+ * Size: 101 training samples
223
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
224
+ * Approximate statistics based on the first 101 samples:
225
+ | | sentence1 | sentence2 | score |
226
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
227
+ | type | string | string | float |
228
+ | details | <ul><li>min: 7 tokens</li><li>mean: 9.44 tokens</li><li>max: 14 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 9.46 tokens</li><li>max: 15 tokens</li></ul> | <ul><li>min: 0.1</li><li>mean: 0.66</li><li>max: 1.0</li></ul> |
229
+ * Samples:
230
+ | sentence1 | sentence2 | score |
231
+ |:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
232
+ | <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
233
+ | <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
234
+ | <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
235
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
236
+ ```json
237
+ {
238
+ "scale": 20.0,
239
+ "similarity_fct": "pairwise_cos_sim"
240
+ }
241
+ ```
242
+
243
+ ### Evaluation Dataset
244
+
245
+ #### stsb
246
+
247
+ * Dataset: [stsb](https://huggingface.co/datasets/sentence-transformers/stsb) at [ab7a5ac](https://huggingface.co/datasets/sentence-transformers/stsb/tree/ab7a5ac0e35aa22088bdcf23e7fd99b220e53308)
248
+ * Size: 1,500 evaluation samples
249
+ * Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>score</code>
250
+ * Approximate statistics based on the first 1000 samples:
251
+ | | sentence1 | sentence2 | score |
252
+ |:--------|:---------------------------------------------------------------------------------|:--------------------------------------------------------------------------------|:---------------------------------------------------------------|
253
+ | type | string | string | float |
254
+ | details | <ul><li>min: 6 tokens</li><li>mean: 9.35 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 7 tokens</li><li>mean: 9.9 tokens</li><li>max: 16 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.39</li><li>max: 1.0</li></ul> |
255
+ * Samples:
256
+ | sentence1 | sentence2 | score |
257
+ |:-----------------------------------------------|:----------------------------------------------------|:------------------|
258
+ | <code>A woman is riding on a horse.</code> | <code>A man is turning over tables in anger.</code> | <code>0.0</code> |
259
+ | <code>A man is screwing wood to a wall.</code> | <code>A man is giving a woman a massage.</code> | <code>0.04</code> |
260
+ | <code>A girl is playing a flute.</code> | <code>A girl plays a wind instrument.</code> | <code>0.64</code> |
261
+ * Loss: [<code>CoSENTLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosentloss) with these parameters:
262
+ ```json
263
+ {
264
+ "scale": 20.0,
265
+ "similarity_fct": "pairwise_cos_sim"
266
+ }
267
+ ```
268
+
269
+ ### Training Hyperparameters
270
+ #### Non-Default Hyperparameters
271
+
272
+ - `eval_strategy`: steps
273
+ - `learning_rate`: 2e-05
274
+ - `num_train_epochs`: 10
275
+ - `warmup_ratio`: 0.1
276
+ - `save_only_model`: True
277
+ - `seed`: 33
278
+ - `fp16`: True
279
+ - `load_best_model_at_end`: True
280
+
281
+ #### All Hyperparameters
282
+ <details><summary>Click to expand</summary>
283
+
284
+ - `overwrite_output_dir`: False
285
+ - `do_predict`: False
286
+ - `eval_strategy`: steps
287
+ - `prediction_loss_only`: True
288
+ - `per_device_train_batch_size`: 8
289
+ - `per_device_eval_batch_size`: 8
290
+ - `per_gpu_train_batch_size`: None
291
+ - `per_gpu_eval_batch_size`: None
292
+ - `gradient_accumulation_steps`: 1
293
+ - `eval_accumulation_steps`: None
294
+ - `torch_empty_cache_steps`: None
295
+ - `learning_rate`: 2e-05
296
+ - `weight_decay`: 0.0
297
+ - `adam_beta1`: 0.9
298
+ - `adam_beta2`: 0.999
299
+ - `adam_epsilon`: 1e-08
300
+ - `max_grad_norm`: 1.0
301
+ - `num_train_epochs`: 10
302
+ - `max_steps`: -1
303
+ - `lr_scheduler_type`: linear
304
+ - `lr_scheduler_kwargs`: {}
305
+ - `warmup_ratio`: 0.1
306
+ - `warmup_steps`: 0
307
+ - `log_level`: passive
308
+ - `log_level_replica`: warning
309
+ - `log_on_each_node`: True
310
+ - `logging_nan_inf_filter`: True
311
+ - `save_safetensors`: True
312
+ - `save_on_each_node`: False
313
+ - `save_only_model`: True
314
+ - `restore_callback_states_from_checkpoint`: False
315
+ - `no_cuda`: False
316
+ - `use_cpu`: False
317
+ - `use_mps_device`: False
318
+ - `seed`: 33
319
+ - `data_seed`: None
320
+ - `jit_mode_eval`: False
321
+ - `use_ipex`: False
322
+ - `bf16`: False
323
+ - `fp16`: True
324
+ - `fp16_opt_level`: O1
325
+ - `half_precision_backend`: auto
326
+ - `bf16_full_eval`: False
327
+ - `fp16_full_eval`: False
328
+ - `tf32`: None
329
+ - `local_rank`: 0
330
+ - `ddp_backend`: None
331
+ - `tpu_num_cores`: None
332
+ - `tpu_metrics_debug`: False
333
+ - `debug`: []
334
+ - `dataloader_drop_last`: False
335
+ - `dataloader_num_workers`: 0
336
+ - `dataloader_prefetch_factor`: None
337
+ - `past_index`: -1
338
+ - `disable_tqdm`: False
339
+ - `remove_unused_columns`: True
340
+ - `label_names`: None
341
+ - `load_best_model_at_end`: True
342
+ - `ignore_data_skip`: False
343
+ - `fsdp`: []
344
+ - `fsdp_min_num_params`: 0
345
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
346
+ - `fsdp_transformer_layer_cls_to_wrap`: None
347
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
348
+ - `deepspeed`: None
349
+ - `label_smoothing_factor`: 0.0
350
+ - `optim`: adamw_torch
351
+ - `optim_args`: None
352
+ - `adafactor`: False
353
+ - `group_by_length`: False
354
+ - `length_column_name`: length
355
+ - `ddp_find_unused_parameters`: None
356
+ - `ddp_bucket_cap_mb`: None
357
+ - `ddp_broadcast_buffers`: False
358
+ - `dataloader_pin_memory`: True
359
+ - `dataloader_persistent_workers`: False
360
+ - `skip_memory_metrics`: True
361
+ - `use_legacy_prediction_loop`: False
362
+ - `push_to_hub`: False
363
+ - `resume_from_checkpoint`: None
364
+ - `hub_model_id`: None
365
+ - `hub_strategy`: every_save
366
+ - `hub_private_repo`: False
367
+ - `hub_always_push`: False
368
+ - `gradient_checkpointing`: False
369
+ - `gradient_checkpointing_kwargs`: None
370
+ - `include_inputs_for_metrics`: False
371
+ - `eval_do_concat_batches`: True
372
+ - `fp16_backend`: auto
373
+ - `push_to_hub_model_id`: None
374
+ - `push_to_hub_organization`: None
375
+ - `mp_parameters`:
376
+ - `auto_find_batch_size`: False
377
+ - `full_determinism`: False
378
+ - `torchdynamo`: None
379
+ - `ray_scope`: last
380
+ - `ddp_timeout`: 1800
381
+ - `torch_compile`: False
382
+ - `torch_compile_backend`: None
383
+ - `torch_compile_mode`: None
384
+ - `dispatch_batches`: None
385
+ - `split_batches`: None
386
+ - `include_tokens_per_second`: False
387
+ - `include_num_input_tokens_seen`: False
388
+ - `neftune_noise_alpha`: None
389
+ - `optim_target_modules`: None
390
+ - `batch_eval_metrics`: False
391
+ - `eval_on_start`: False
392
+ - `eval_use_gather_object`: False
393
+ - `batch_sampler`: batch_sampler
394
+ - `multi_dataset_batch_sampler`: proportional
395
+
396
+ </details>
397
+
398
+ ### Training Logs
399
+ | Epoch | Step | loss | sts-dev_spearman_cosine |
400
+ |:--------:|:-------:|:----------:|:-----------------------:|
401
+ | 0.1538 | 2 | 4.4641 | 0.9366 |
402
+ | 0.3077 | 4 | 4.4652 | 0.9366 |
403
+ | 0.4615 | 6 | 4.4719 | 0.9366 |
404
+ | 0.6154 | 8 | 4.4903 | 0.9366 |
405
+ | 0.7692 | 10 | 4.5264 | 0.9373 |
406
+ | 0.9231 | 12 | 4.5954 | 0.9339 |
407
+ | 1.0769 | 14 | 4.6832 | 0.9328 |
408
+ | 1.2308 | 16 | 4.7534 | 0.9289 |
409
+ | 1.3846 | 18 | 4.8155 | 0.9281 |
410
+ | 1.5385 | 20 | 4.8788 | 0.9269 |
411
+ | 1.6923 | 22 | 4.9350 | 0.9272 |
412
+ | 1.8462 | 24 | 4.9789 | 0.9239 |
413
+ | 2.0 | 26 | 5.0132 | 0.9230 |
414
+ | 2.1538 | 28 | 5.0636 | 0.9237 |
415
+ | 2.3077 | 30 | 5.1068 | 0.9202 |
416
+ | 2.4615 | 32 | 5.1460 | 0.9172 |
417
+ | 2.6154 | 34 | 5.1602 | 0.9164 |
418
+ | 2.7692 | 36 | 5.1493 | 0.9210 |
419
+ | 2.9231 | 38 | 5.1399 | 0.9200 |
420
+ | 3.0769 | 40 | 5.1342 | 0.9235 |
421
+ | 3.2308 | 42 | 5.1413 | 0.9258 |
422
+ | 3.3846 | 44 | 5.1440 | 0.9271 |
423
+ | 3.5385 | 46 | 5.1583 | 0.9311 |
424
+ | 3.6923 | 48 | 5.1664 | 0.9293 |
425
+ | 3.8462 | 50 | 5.1682 | 0.9293 |
426
+ | 4.0 | 52 | 5.1617 | 0.9293 |
427
+ | 4.1538 | 54 | 5.1543 | 0.9293 |
428
+ | 4.3077 | 56 | 5.1480 | 0.9293 |
429
+ | 4.4615 | 58 | 5.1428 | 0.9291 |
430
+ | 4.6154 | 60 | 5.1292 | 0.9298 |
431
+ | 4.7692 | 62 | 5.1271 | 0.9276 |
432
+ | 4.9231 | 64 | 5.1133 | 0.9276 |
433
+ | 5.0769 | 66 | 5.0928 | 0.9270 |
434
+ | 5.2308 | 68 | 5.0874 | 0.9270 |
435
+ | 5.3846 | 70 | 5.0755 | 0.9270 |
436
+ | 5.5385 | 72 | 5.0665 | 0.9270 |
437
+ | 5.6923 | 74 | 5.0676 | 0.9293 |
438
+ | 5.8462 | 76 | 5.0747 | 0.9293 |
439
+ | 6.0 | 78 | 5.0647 | 0.9295 |
440
+ | 6.1538 | 80 | 5.0763 | 0.9273 |
441
+ | 6.3077 | 82 | 5.0832 | 0.9272 |
442
+ | 6.4615 | 84 | 5.0750 | 0.9289 |
443
+ | 6.6154 | 86 | 5.0547 | 0.9289 |
444
+ | 6.7692 | 88 | 5.0350 | 0.9308 |
445
+ | 6.9231 | 90 | 5.0221 | 0.9308 |
446
+ | 7.0769 | 92 | 5.0107 | 0.9308 |
447
+ | 7.2308 | 94 | 4.9967 | 0.9297 |
448
+ | 7.3846 | 96 | 4.9983 | 0.9297 |
449
+ | 7.5385 | 98 | 5.0026 | 0.9277 |
450
+ | 7.6923 | 100 | 5.0095 | 0.9277 |
451
+ | 7.8462 | 102 | 5.0102 | 0.9277 |
452
+ | 8.0 | 104 | 5.0055 | 0.9271 |
453
+ | 8.1538 | 106 | 5.0031 | 0.9271 |
454
+ | 8.3077 | 108 | 4.9976 | 0.9271 |
455
+ | 8.4615 | 110 | 4.9941 | 0.9271 |
456
+ | 8.6154 | 112 | 4.9856 | 0.9276 |
457
+ | 8.7692 | 114 | 4.9821 | 0.9276 |
458
+ | 8.9231 | 116 | 4.9782 | 0.9276 |
459
+ | 9.0769 | 118 | 4.9706 | 0.9276 |
460
+ | 9.2308 | 120 | 4.9646 | 0.9276 |
461
+ | 9.3846 | 122 | 4.9584 | 0.9276 |
462
+ | 9.5385 | 124 | 4.9537 | 0.9276 |
463
+ | 9.6923 | 126 | 4.9499 | 0.9276 |
464
+ | 9.8462 | 128 | 4.9485 | 0.9276 |
465
+ | **10.0** | **130** | **4.9463** | **0.9276** |
466
+
467
+ * The bold row denotes the saved checkpoint.
468
+
469
+ ### Framework Versions
470
+ - Python: 3.8.10
471
+ - Sentence Transformers: 3.1.0
472
+ - Transformers: 4.44.2
473
+ - PyTorch: 2.3.1+cu121
474
+ - Accelerate: 0.34.2
475
+ - Datasets: 3.0.0
476
+ - Tokenizers: 0.19.1
477
+
478
+ ## Citation
479
+
480
+ ### BibTeX
481
+
482
+ #### Sentence Transformers
483
+ ```bibtex
484
+ @inproceedings{reimers-2019-sentence-bert,
485
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
486
+ author = "Reimers, Nils and Gurevych, Iryna",
487
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
488
+ month = "11",
489
+ year = "2019",
490
+ publisher = "Association for Computational Linguistics",
491
+ url = "https://arxiv.org/abs/1908.10084",
492
+ }
493
+ ```
494
+
495
+ #### CoSENTLoss
496
+ ```bibtex
497
+ @online{kexuefm-8847,
498
+ title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
499
+ author={Su Jianlin},
500
+ year={2022},
501
+ month={Jan},
502
+ url={https://kexue.fm/archives/8847},
503
+ }
504
+ ```
505
+
506
+ <!--
507
+ ## Glossary
508
+
509
+ *Clearly define terms in order to be accessible across audiences.*
510
+ -->
511
+
512
+ <!--
513
+ ## Model Card Authors
514
+
515
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
516
+ -->
517
+
518
+ <!--
519
+ ## Model Card Contact
520
+
521
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
522
+ -->
config.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "sbert-model",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-12,
15
+ "max_position_embeddings": 512,
16
+ "model_type": "bert",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 0,
20
+ "position_embedding_type": "absolute",
21
+ "torch_dtype": "float32",
22
+ "transformers_version": "4.44.2",
23
+ "type_vocab_size": 2,
24
+ "use_cache": true,
25
+ "vocab_size": 30522
26
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.1.0",
4
+ "transformers": "4.44.2",
5
+ "pytorch": "2.3.1+cu121"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": null
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:31bf8e0e22c3bb06c4e50edd023e7bd542b19720172e10da0de2cfde08f531a0
3
+ size 90864192
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,64 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "max_length": 128,
50
+ "model_max_length": 512,
51
+ "never_split": null,
52
+ "pad_to_multiple_of": null,
53
+ "pad_token": "[PAD]",
54
+ "pad_token_type_id": 0,
55
+ "padding_side": "right",
56
+ "sep_token": "[SEP]",
57
+ "stride": 0,
58
+ "strip_accents": null,
59
+ "tokenize_chinese_chars": true,
60
+ "tokenizer_class": "BertTokenizer",
61
+ "truncation_side": "right",
62
+ "truncation_strategy": "longest_first",
63
+ "unk_token": "[UNK]"
64
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff