dariuslimzh's picture
Training completed
99e7bdc verified
metadata
license: apache-2.0
base_model: ICT2214Team7/RoBERTa_Test_Training
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: RoBERTa_Combined_Generated_v1.1_epoch_4
    results: []

RoBERTa_Combined_Generated_v1.1_epoch_4

This model is a fine-tuned version of ICT2214Team7/RoBERTa_Test_Training on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0017
  • Precision: 0.9959
  • Recall: 0.9959
  • F1: 0.9959
  • Accuracy: 0.9995
  • Report: {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.96, 'f1-score': 0.9795918367346939, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9887640449438202, 'recall': 1.0, 'f1-score': 0.9943502824858756, 'support': 176}, 'micro avg': {'precision': 0.9959432048681541, 'recall': 0.9959432048681541, 'f1-score': 0.9959432048681541, 'support': 493}, 'macro avg': {'precision': 0.997752808988764, 'recall': 0.9808888888888889, 'f1-score': 0.9890741381298283, 'support': 493}, 'weighted avg': {'precision': 0.9959887868359277, 'recall': 0.9959432048681541, 'f1-score': 0.995904989698977, 'support': 493}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy Report
No log 1.0 200 0.0087 0.9798 0.9838 0.9818 0.9976 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 0.9615384615384616, 'recall': 0.9900990099009901, 'f1-score': 0.975609756097561, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.88, 'f1-score': 0.9361702127659575, 'support': 25}, 'ORG': {'precision': 0.9771428571428571, 'recall': 0.9884393063583815, 'f1-score': 0.9827586206896551, 'support': 173}, 'PER': {'precision': 0.9887005649717514, 'recall': 0.9943181818181818, 'f1-score': 0.9915014164305949, 'support': 176}, 'micro avg': {'precision': 0.9797979797979798, 'recall': 0.9837728194726166, 'f1-score': 0.9817813765182186, 'support': 493}, 'macro avg': {'precision': 0.9854763767306141, 'recall': 0.9594601885043996, 'f1-score': 0.971493715482468, 'support': 493}, 'weighted avg': {'precision': 0.9800657167061402, 'recall': 0.9837728194726166, 'f1-score': 0.981639037813006, 'support': 493}}
No log 2.0 400 0.0026 0.9959 0.9959 0.9959 0.9995 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.96, 'f1-score': 0.9795918367346939, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9887640449438202, 'recall': 1.0, 'f1-score': 0.9943502824858756, 'support': 176}, 'micro avg': {'precision': 0.9959432048681541, 'recall': 0.9959432048681541, 'f1-score': 0.9959432048681541, 'support': 493}, 'macro avg': {'precision': 0.997752808988764, 'recall': 0.9808888888888889, 'f1-score': 0.9890741381298283, 'support': 493}, 'weighted avg': {'precision': 0.9959887868359277, 'recall': 0.9959432048681541, 'f1-score': 0.995904989698977, 'support': 493}}
0.0678 3.0 600 0.0015 0.9959 0.9959 0.9959 0.9995 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.96, 'f1-score': 0.9795918367346939, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9887640449438202, 'recall': 1.0, 'f1-score': 0.9943502824858756, 'support': 176}, 'micro avg': {'precision': 0.9959432048681541, 'recall': 0.9959432048681541, 'f1-score': 0.9959432048681541, 'support': 493}, 'macro avg': {'precision': 0.997752808988764, 'recall': 0.9808888888888889, 'f1-score': 0.9890741381298283, 'support': 493}, 'weighted avg': {'precision': 0.9959887868359277, 'recall': 0.9959432048681541, 'f1-score': 0.995904989698977, 'support': 493}}
0.0678 4.0 800 0.0017 0.9959 0.9959 0.9959 0.9995 {'AGE': {'precision': 1.0, 'recall': 0.9444444444444444, 'f1-score': 0.9714285714285714, 'support': 18}, 'LOC': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 101}, 'NAT': {'precision': 1.0, 'recall': 0.96, 'f1-score': 0.9795918367346939, 'support': 25}, 'ORG': {'precision': 1.0, 'recall': 1.0, 'f1-score': 1.0, 'support': 173}, 'PER': {'precision': 0.9887640449438202, 'recall': 1.0, 'f1-score': 0.9943502824858756, 'support': 176}, 'micro avg': {'precision': 0.9959432048681541, 'recall': 0.9959432048681541, 'f1-score': 0.9959432048681541, 'support': 493}, 'macro avg': {'precision': 0.997752808988764, 'recall': 0.9808888888888889, 'f1-score': 0.9890741381298283, 'support': 493}, 'weighted avg': {'precision': 0.9959887868359277, 'recall': 0.9959432048681541, 'f1-score': 0.995904989698977, 'support': 493}}

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1