RoBERTa_Test_Training
This model is a fine-tuned version of distilroberta-base on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0590
- Precision: 0.9508
- Recall: 0.9550
- F1: 0.9529
- Accuracy: 0.9880
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.0803 | 1.0 | 1756 | 0.0725 | 0.9236 | 0.9313 | 0.9274 | 0.9820 |
0.0373 | 2.0 | 3512 | 0.0627 | 0.9453 | 0.9487 | 0.9470 | 0.9868 |
0.0213 | 3.0 | 5268 | 0.0590 | 0.9508 | 0.9550 | 0.9529 | 0.9880 |
Framework versions
- Transformers 4.40.2
- Pytorch 2.3.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1
- Downloads last month
- 10
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for ICT2214Team7/RoBERTa_Test_Training
Dataset used to train ICT2214Team7/RoBERTa_Test_Training
Evaluation results
- Precision on conll2003validation set self-reported0.951
- Recall on conll2003validation set self-reported0.955
- F1 on conll2003validation set self-reported0.953
- Accuracy on conll2003validation set self-reported0.988