File size: 1,521 Bytes
82f0bfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6bb387e
82f0bfd
 
6bb387e
82f0bfd
 
 
 
 
 
 
6bb387e
82f0bfd
6bb387e
 
 
 
 
 
 
82f0bfd
 
9b54c1b
82f0bfd
9b54c1b
 
 
 
 
 
 
 
 
 
 
82f0bfd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
---
license: apache-2.0
---


# Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language models

> [Tian Yu](https://tianyu0313.github.io/), [Shaolei Zhang](https://zhangshaolei1998.github.io/), and [Yang Feng](https://people.ucas.edu.cn/~yangfeng?language=en)*


## Model Details

<!-- Provide a longer summary of what this model is. -->


- **Discription:** This is Auto-RAG model trained with synthesized iterative retrieval instruction data. Details can be found in our paper.
- **Developed by:** ICTNLP Group. Authors: Tian Yu, Shaolei Zhang and Yang Feng.
- **Github Repository:** https://github.com/ictnlp/Auto-RAG
- **Paper Link:** https://arxiv.org/abs/2411.19443
- **Finetuned from model:** Meta-Llama3-8B-Instruct


## Uses

<!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->

You can directly deploy the model using vllm, such as:
```
CUDA_VISIBLE_DEVICES=6,7 python -m vllm.entrypoints.openai.api_server \
    --model PATH_TO_MODEL\
    --gpu-memory-utilization 0.9 \
    -tp 2 \
    --max-model-len 8192\
    --port 8000\
    --host 0.0.0.0
```

## Citation

```
@article{yu2024autorag,
      title={Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models}, 
      author={Tian Yu and Shaolei Zhang and Yang Feng},
      year={2024},
      eprint={2411.19443},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2411.19443}, 
}
```