Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language models
Tian Yu, Shaolei Zhang, and Yang Feng*
Model Details
- Discription: This is Auto-RAG model trained with synthesized iterative retrieval instruction data. Details can be found in our paper.
- Developed by: ICTNLP Group. Authors: Tian Yu, Shaolei Zhang and Yang Feng.
- Github Repository: https://github.com/ictnlp/Auto-RAG
- Paper Link: https://arxiv.org/abs/2411.19443
- Finetuned from model: Meta-Llama3-8B-Instruct
Uses
You can directly deploy the model using vllm, such as:
CUDA_VISIBLE_DEVICES=6,7 python -m vllm.entrypoints.openai.api_server \
--model PATH_TO_MODEL\
--gpu-memory-utilization 0.9 \
-tp 2 \
--max-model-len 8192\
--port 8000\
--host 0.0.0.0
Citation
@article{yu2024autorag,
title={Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models},
author={Tian Yu and Shaolei Zhang and Yang Feng},
year={2024},
eprint={2411.19443},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.19443},
}
- Downloads last month
- 68
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.