|
|
|
from functools import partial |
|
from typing import Callable, List, Optional, Tuple, Union |
|
|
|
import torch |
|
import torch.nn as nn |
|
from open_clip.factory import get_model_config |
|
from open_clip.model import CLIPVisionCfg |
|
from timm.layers import (AvgPool2dSame, ClassifierHead, DropPath, |
|
GlobalResponseNormMlp, LayerNorm, LayerNorm2d, Mlp, |
|
NormMlpClassifierHead, create_conv2d, get_act_layer, |
|
make_divisible, to_ntuple, trunc_normal_) |
|
from timm.models._builder import build_model_with_cfg |
|
from timm.models._features import feature_take_indices |
|
from timm.models._manipulate import checkpoint_seq, named_apply |
|
|
|
|
|
__all__ = ['ConvNeXt'] |
|
|
|
|
|
class Downsample(nn.Module): |
|
|
|
def __init__(self, in_chs, out_chs, stride=1, dilation=1): |
|
super().__init__() |
|
avg_stride = stride if dilation == 1 else 1 |
|
if stride > 1 or dilation > 1: |
|
avg_pool_fn = AvgPool2dSame if avg_stride == 1 and dilation > 1 else nn.AvgPool2d |
|
self.pool = avg_pool_fn(2, avg_stride, ceil_mode=True, count_include_pad=False) |
|
else: |
|
self.pool = nn.Identity() |
|
|
|
if in_chs != out_chs: |
|
self.conv = create_conv2d(in_chs, out_chs, 1, stride=1) |
|
else: |
|
self.conv = nn.Identity() |
|
|
|
def forward(self, x): |
|
x = self.pool(x) |
|
x = self.conv(x) |
|
return x |
|
|
|
|
|
class ConvNeXtBlock(nn.Module): |
|
""" ConvNeXt Block |
|
There are two equivalent implementations: |
|
(1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W) |
|
(2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back |
|
|
|
Unlike the official impl, this one allows choice of 1 or 2, 1x1 conv can be faster with appropriate |
|
choice of LayerNorm impl, however as model size increases the tradeoffs appear to change and nn.Linear |
|
is a better choice. This was observed with PyTorch 1.10 on 3090 GPU, it could change over time & w/ different HW. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chs: int, |
|
out_chs: Optional[int] = None, |
|
kernel_size: int = 7, |
|
stride: int = 1, |
|
dilation: Union[int, Tuple[int, int]] = (1, 1), |
|
mlp_ratio: float = 4, |
|
conv_mlp: bool = False, |
|
conv_bias: bool = True, |
|
use_grn: bool = False, |
|
ls_init_value: Optional[float] = 1e-6, |
|
act_layer: Union[str, Callable] = 'gelu', |
|
norm_layer: Optional[Callable] = None, |
|
drop_path: float = 0., |
|
): |
|
""" |
|
|
|
Args: |
|
in_chs: Block input channels. |
|
out_chs: Block output channels (same as in_chs if None). |
|
kernel_size: Depthwise convolution kernel size. |
|
stride: Stride of depthwise convolution. |
|
dilation: Tuple specifying input and output dilation of block. |
|
mlp_ratio: MLP expansion ratio. |
|
conv_mlp: Use 1x1 convolutions for MLP and a NCHW compatible norm layer if True. |
|
conv_bias: Apply bias for all convolution (linear) layers. |
|
use_grn: Use GlobalResponseNorm in MLP (from ConvNeXt-V2) |
|
ls_init_value: Layer-scale init values, layer-scale applied if not None. |
|
act_layer: Activation layer. |
|
norm_layer: Normalization layer (defaults to LN if not specified). |
|
drop_path: Stochastic depth probability. |
|
""" |
|
super().__init__() |
|
out_chs = out_chs or in_chs |
|
dilation = to_ntuple(2)(dilation) |
|
act_layer = get_act_layer(act_layer) |
|
if not norm_layer: |
|
norm_layer = LayerNorm2d if conv_mlp else LayerNorm |
|
mlp_layer = partial(GlobalResponseNormMlp if use_grn else Mlp, use_conv=conv_mlp) |
|
self.use_conv_mlp = conv_mlp |
|
self.conv_dw = create_conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=kernel_size, |
|
stride=stride, |
|
dilation=dilation[0], |
|
depthwise=True, |
|
bias=conv_bias, |
|
) |
|
self.norm = norm_layer(out_chs) |
|
self.mlp = mlp_layer(out_chs, int(mlp_ratio * out_chs), act_layer=act_layer) |
|
self.ramma = nn.Parameter(ls_init_value * torch.ones(out_chs)) if ls_init_value is not None else None |
|
if in_chs != out_chs or stride != 1 or dilation[0] != dilation[1]: |
|
self.shortcut = Downsample(in_chs, out_chs, stride=stride, dilation=dilation[0]) |
|
else: |
|
self.shortcut = nn.Identity() |
|
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() |
|
|
|
def forward(self, x): |
|
shortcut = x |
|
x = self.conv_dw(x) |
|
if self.use_conv_mlp: |
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
else: |
|
x = x.permute(0, 2, 3, 1) |
|
x = self.norm(x) |
|
x = self.mlp(x) |
|
x = x.permute(0, 3, 1, 2) |
|
if self.ramma is not None: |
|
x = x.mul(self.ramma.reshape(1, -1, 1, 1)) |
|
|
|
x = self.drop_path(x) + self.shortcut(shortcut) |
|
return x |
|
|
|
|
|
class ConvNeXtStage(nn.Module): |
|
|
|
def __init__( |
|
self, |
|
in_chs, |
|
out_chs, |
|
kernel_size=7, |
|
stride=2, |
|
depth=2, |
|
dilation=(1, 1), |
|
drop_path_rates=None, |
|
ls_init_value=1.0, |
|
conv_mlp=False, |
|
conv_bias=True, |
|
use_grn=False, |
|
act_layer='gelu', |
|
norm_layer=None, |
|
norm_layer_cl=None |
|
): |
|
super().__init__() |
|
self.grad_checkpointing = False |
|
|
|
if in_chs != out_chs or stride > 1 or dilation[0] != dilation[1]: |
|
ds_ks = 2 if stride > 1 or dilation[0] != dilation[1] else 1 |
|
pad = 'same' if dilation[1] > 1 else 0 |
|
self.downsample = nn.Sequential( |
|
norm_layer(in_chs), |
|
create_conv2d( |
|
in_chs, |
|
out_chs, |
|
kernel_size=ds_ks, |
|
stride=stride, |
|
dilation=dilation[0], |
|
padding=pad, |
|
bias=conv_bias, |
|
), |
|
) |
|
in_chs = out_chs |
|
else: |
|
self.downsample = nn.Identity() |
|
|
|
drop_path_rates = drop_path_rates or [0.] * depth |
|
stage_blocks = [] |
|
for i in range(depth): |
|
stage_blocks.append(ConvNeXtBlock( |
|
in_chs=in_chs, |
|
out_chs=out_chs, |
|
kernel_size=kernel_size, |
|
dilation=dilation[1], |
|
drop_path=drop_path_rates[i], |
|
ls_init_value=ls_init_value, |
|
conv_mlp=conv_mlp, |
|
conv_bias=conv_bias, |
|
use_grn=use_grn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer if conv_mlp else norm_layer_cl, |
|
)) |
|
in_chs = out_chs |
|
self.blocks = nn.Sequential(*stage_blocks) |
|
|
|
def forward(self, x): |
|
x = self.downsample(x) |
|
if self.grad_checkpointing and not torch.jit.is_scripting(): |
|
x = checkpoint_seq(self.blocks, x) |
|
else: |
|
x = self.blocks(x) |
|
return x |
|
|
|
|
|
class ConvNeXt(nn.Module): |
|
r""" ConvNeXt |
|
A PyTorch impl of : `A ConvNet for the 2020s` - https://arxiv.org/pdf/2201.03545.pdf |
|
""" |
|
|
|
def __init__( |
|
self, |
|
in_chans: int = 3, |
|
num_classes: int = 1000, |
|
global_pool: str = 'avg', |
|
output_stride: int = 32, |
|
depths: Tuple[int, ...] = (3, 3, 9, 3), |
|
dims: Tuple[int, ...] = (96, 192, 384, 768), |
|
kernel_sizes: Union[int, Tuple[int, ...]] = 7, |
|
ls_init_value: Optional[float] = 1e-6, |
|
stem_type: str = 'patch', |
|
patch_size: int = 4, |
|
head_init_scale: float = 1., |
|
head_norm_first: bool = False, |
|
head_hidden_size: Optional[int] = None, |
|
conv_mlp: bool = False, |
|
conv_bias: bool = True, |
|
use_grn: bool = False, |
|
act_layer: Union[str, Callable] = 'gelu', |
|
norm_layer: Optional[Union[str, Callable]] = None, |
|
norm_eps: Optional[float] = None, |
|
drop_rate: float = 0., |
|
drop_path_rate: float = 0., |
|
): |
|
""" |
|
Args: |
|
in_chans: Number of input image channels. |
|
num_classes: Number of classes for classification head. |
|
global_pool: Global pooling type. |
|
output_stride: Output stride of network, one of (8, 16, 32). |
|
depths: Number of blocks at each stage. |
|
dims: Feature dimension at each stage. |
|
kernel_sizes: Depthwise convolution kernel-sizes for each stage. |
|
ls_init_value: Init value for Layer Scale, disabled if None. |
|
stem_type: Type of stem. |
|
patch_size: Stem patch size for patch stem. |
|
head_init_scale: Init scaling value for classifier weights and biases. |
|
head_norm_first: Apply normalization before global pool + head. |
|
head_hidden_size: Size of MLP hidden layer in head if not None and head_norm_first == False. |
|
conv_mlp: Use 1x1 conv in MLP, improves speed for small networks w/ chan last. |
|
conv_bias: Use bias layers w/ all convolutions. |
|
use_grn: Use Global Response Norm (ConvNeXt-V2) in MLP. |
|
act_layer: Activation layer type. |
|
norm_layer: Normalization layer type. |
|
drop_rate: Head pre-classifier dropout rate. |
|
drop_path_rate: Stochastic depth drop rate. |
|
""" |
|
super().__init__() |
|
assert output_stride in (8, 16, 32) |
|
kernel_sizes = to_ntuple(4)(kernel_sizes) |
|
if norm_layer is None: |
|
norm_layer = LayerNorm2d |
|
norm_layer_cl = norm_layer if conv_mlp else LayerNorm |
|
if norm_eps is not None: |
|
norm_layer = partial(norm_layer, eps=norm_eps) |
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) |
|
else: |
|
assert conv_mlp,\ |
|
'If a norm_layer is specified, conv MLP must be used so all norm expect rank-4, channels-first input' |
|
norm_layer_cl = norm_layer |
|
if norm_eps is not None: |
|
norm_layer_cl = partial(norm_layer_cl, eps=norm_eps) |
|
|
|
self.num_classes = num_classes |
|
self.drop_rate = drop_rate |
|
self.feature_info = [] |
|
|
|
assert stem_type in ('patch', 'overlap', 'overlap_tiered') |
|
if stem_type == 'patch': |
|
|
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, dims[0], kernel_size=patch_size, stride=patch_size, bias=conv_bias), |
|
norm_layer(dims[0]), |
|
) |
|
stem_stride = patch_size |
|
else: |
|
mid_chs = make_divisible(dims[0] // 2) if 'tiered' in stem_type else dims[0] |
|
self.stem = nn.Sequential( |
|
nn.Conv2d(in_chans, mid_chs, kernel_size=3, stride=2, padding=1, bias=conv_bias), |
|
nn.Conv2d(mid_chs, dims[0], kernel_size=3, stride=2, padding=1, bias=conv_bias), |
|
norm_layer(dims[0]), |
|
) |
|
stem_stride = 4 |
|
|
|
self.stages = nn.Sequential() |
|
dp_rates = [x.tolist() for x in torch.linspace(0, drop_path_rate, sum(depths)).split(depths)] |
|
stages = [] |
|
prev_chs = dims[0] |
|
curr_stride = stem_stride |
|
dilation = 1 |
|
|
|
for i in range(4): |
|
stride = 2 if curr_stride == 2 or i > 0 else 1 |
|
if curr_stride >= output_stride and stride > 1: |
|
dilation *= stride |
|
stride = 1 |
|
curr_stride *= stride |
|
first_dilation = 1 if dilation in (1, 2) else 2 |
|
out_chs = dims[i] |
|
stages.append(ConvNeXtStage( |
|
prev_chs, |
|
out_chs, |
|
kernel_size=kernel_sizes[i], |
|
stride=stride, |
|
dilation=(first_dilation, dilation), |
|
depth=depths[i], |
|
drop_path_rates=dp_rates[i], |
|
ls_init_value=ls_init_value, |
|
conv_mlp=conv_mlp, |
|
conv_bias=conv_bias, |
|
use_grn=use_grn, |
|
act_layer=act_layer, |
|
norm_layer=norm_layer, |
|
norm_layer_cl=norm_layer_cl, |
|
)) |
|
prev_chs = out_chs |
|
|
|
self.feature_info += [dict(num_chs=prev_chs, reduction=curr_stride, module=f'stages.{i}')] |
|
self.stages = nn.Sequential(*stages) |
|
self.num_features = self.head_hidden_size = prev_chs |
|
|
|
|
|
|
|
if head_norm_first: |
|
assert not head_hidden_size |
|
self.norm_pre = norm_layer(self.num_features) |
|
self.head = ClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
) |
|
else: |
|
self.norm_pre = nn.Identity() |
|
self.head = NormMlpClassifierHead( |
|
self.num_features, |
|
num_classes, |
|
hidden_size=head_hidden_size, |
|
pool_type=global_pool, |
|
drop_rate=self.drop_rate, |
|
norm_layer=norm_layer, |
|
act_layer='gelu', |
|
) |
|
self.head_hidden_size = self.head.num_features |
|
named_apply(partial(_init_weights, head_init_scale=head_init_scale), self) |
|
|
|
@torch.jit.ignore |
|
def group_matcher(self, coarse=False): |
|
return dict( |
|
stem=r'^stem', |
|
blocks=r'^stages\.(\d+)' if coarse else [ |
|
(r'^stages\.(\d+)\.downsample', (0,)), |
|
(r'^stages\.(\d+)\.blocks\.(\d+)', None), |
|
(r'^norm_pre', (99999,)) |
|
] |
|
) |
|
|
|
@torch.jit.ignore |
|
def set_grad_checkpointing(self, enable=True): |
|
for s in self.stages: |
|
s.grad_checkpointing = enable |
|
|
|
@torch.jit.ignore |
|
def get_classifier(self) -> nn.Module: |
|
return self.head.fc |
|
|
|
def reset_classifier(self, num_classes: int, global_pool: Optional[str] = None): |
|
self.num_classes = num_classes |
|
self.head.reset(num_classes, global_pool) |
|
|
|
def forward_intermediates( |
|
self, |
|
x: torch.Tensor, |
|
indices: Optional[Union[int, List[int], Tuple[int]]] = None, |
|
norm: bool = False, |
|
stop_early: bool = False, |
|
output_fmt: str = 'NCHW', |
|
intermediates_only: bool = False, |
|
) -> Union[List[torch.Tensor], Tuple[torch.Tensor, List[torch.Tensor]]]: |
|
""" Forward features that returns intermediates. |
|
|
|
Args: |
|
x: Input image tensor |
|
indices: Take last n blocks if int, all if None, select matching indices if sequence |
|
norm: Apply norm layer to compatible intermediates |
|
stop_early: Stop iterating over blocks when last desired intermediate hit |
|
output_fmt: Shape of intermediate feature outputs |
|
intermediates_only: Only return intermediate features |
|
Returns: |
|
|
|
""" |
|
assert output_fmt in ('NCHW',), 'Output shape must be NCHW.' |
|
intermediates = [] |
|
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) |
|
|
|
|
|
feat_idx = 0 |
|
x = self.stem(x) |
|
if feat_idx in take_indices: |
|
intermediates.append(x) |
|
|
|
if torch.jit.is_scripting() or not stop_early: |
|
stages = self.stages |
|
else: |
|
stages = self.stages[:max_index] |
|
for stage in stages: |
|
feat_idx += 1 |
|
x = stage(x) |
|
if feat_idx in take_indices: |
|
|
|
intermediates.append(x) |
|
|
|
if intermediates_only: |
|
return intermediates |
|
|
|
x = self.norm_pre(x) |
|
|
|
return x, intermediates |
|
|
|
def prune_intermediate_layers( |
|
self, |
|
indices: Union[int, List[int], Tuple[int]] = 1, |
|
prune_norm: bool = False, |
|
prune_head: bool = True, |
|
): |
|
""" Prune layers not required for specified intermediates. |
|
""" |
|
take_indices, max_index = feature_take_indices(len(self.stages) + 1, indices) |
|
self.stages = self.stages[:max_index] |
|
if prune_norm: |
|
self.norm_pre = nn.Identity() |
|
if prune_head: |
|
self.reset_classifier(0, '') |
|
return take_indices |
|
|
|
def forward_features(self, x): |
|
x = self.stem(x) |
|
x = self.stages(x) |
|
x = self.norm_pre(x) |
|
return x |
|
|
|
def forward_head(self, x, pre_logits: bool = False): |
|
return self.head(x, pre_logits=True) if pre_logits else self.head(x) |
|
|
|
def forward(self, x): |
|
x = self.forward_features(x) |
|
x = self.forward_head(x) |
|
return x |
|
|
|
|
|
def _init_weights(module, name=None, head_init_scale=1.0): |
|
if isinstance(module, nn.Conv2d): |
|
trunc_normal_(module.weight, std=.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
elif isinstance(module, nn.Linear): |
|
trunc_normal_(module.weight, std=.02) |
|
nn.init.zeros_(module.bias) |
|
if name and 'head.' in name: |
|
module.weight.data.mul_(head_init_scale) |
|
module.bias.data.mul_(head_init_scale) |
|
|
|
|
|
def checkpoint_filter_fn(state_dict, model): |
|
""" Remap FB checkpoints -> timm """ |
|
if 'head.norm.weight' in state_dict or 'norm_pre.weight' in state_dict: |
|
return state_dict |
|
if 'model' in state_dict: |
|
state_dict = state_dict['model'] |
|
|
|
out_dict = {} |
|
if 'visual.trunk.stem.0.weight' in state_dict: |
|
out_dict = {k.replace('visual.trunk.', ''): v for k, v in state_dict.items() if k.startswith('visual.trunk.')} |
|
if 'visual.head.proj.weight' in state_dict: |
|
out_dict['head.fc.weight'] = state_dict['visual.head.proj.weight'] |
|
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.proj.weight'].shape[0]) |
|
elif 'visual.head.mlp.fc1.weight' in state_dict: |
|
out_dict['head.pre_logits.fc.weight'] = state_dict['visual.head.mlp.fc1.weight'] |
|
out_dict['head.pre_logits.fc.bias'] = state_dict['visual.head.mlp.fc1.bias'] |
|
out_dict['head.fc.weight'] = state_dict['visual.head.mlp.fc2.weight'] |
|
out_dict['head.fc.bias'] = torch.zeros(state_dict['visual.head.mlp.fc2.weight'].shape[0]) |
|
return out_dict |
|
|
|
import re |
|
for k, v in state_dict.items(): |
|
k = k.replace('downsample_layers.0.', 'stem.') |
|
k = re.sub(r'stages.([0-9]+).([0-9]+)', r'stages.\1.blocks.\2', k) |
|
k = re.sub(r'downsample_layers.([0-9]+).([0-9]+)', r'stages.\1.downsample.\2', k) |
|
k = k.replace('dwconv', 'conv_dw') |
|
k = k.replace('pwconv', 'mlp.fc') |
|
if 'grn' in k: |
|
k = k.replace('grn.beta', 'mlp.grn.bias') |
|
k = k.replace('grn.ramma', 'mlp.grn.weight') |
|
v = v.reshape(v.shape[-1]) |
|
k = k.replace('head.', 'head.fc.') |
|
if k.startswith('norm.'): |
|
k = k.replace('norm', 'head.norm') |
|
if v.ndim == 2 and 'head' not in k: |
|
model_shape = model.state_dict()[k].shape |
|
v = v.reshape(model_shape) |
|
out_dict[k] = v |
|
|
|
return out_dict |
|
|
|
|
|
def _create_convnext(variant, pretrained=False, **kwargs): |
|
if kwargs.get('pretrained_cfg', '') == 'fcmae': |
|
|
|
|
|
kwargs.setdefault('pretrained_strict', False) |
|
|
|
model = build_model_with_cfg( |
|
ConvNeXt, variant, pretrained, |
|
pretrained_filter_fn=checkpoint_filter_fn, |
|
feature_cfg=dict(out_indices=(0, 1, 2, 3), flatten_sequential=True), |
|
**kwargs) |
|
return model |
|
|
|
def convnext_large(pretrained=False, **kwargs) -> ConvNeXt: |
|
model_args = dict(depths=[3, 3, 27, 3], dims=[192, 384, 768, 1536]) |
|
model = _create_convnext('convnext_large', pretrained=pretrained, **dict(model_args, **kwargs)) |
|
return model |
|
|
|
|
|
|
|
class CLIP(nn.Module): |
|
output_dict: torch.jit.Final[bool] |
|
|
|
def __init__( |
|
self, |
|
embed_dim: int, |
|
vision_cfg: CLIPVisionCfg, |
|
quick_gelu: bool = False, |
|
cast_dtype: Optional[torch.dtype] = None, |
|
output_dict: bool = False, |
|
**kwargs, |
|
): |
|
super().__init__() |
|
self.output_dict = output_dict |
|
|
|
self.visual = convnext_large() |
|
|
|
class ConvNextVisionEncoder(nn.Module): |
|
def __init__( |
|
self, |
|
): |
|
super().__init__() |
|
self.model_type = "convnext_large_d_320" |
|
self.model_channel = [192, 384, 768, 1536] |
|
|
|
clip_model = CLIP(**get_model_config(self.model_type), use_text=False) |
|
|
|
|
|
self.vision_stem = clip_model.visual.stem |
|
self.vision_stages = clip_model.visual.stages |
|
|
|
def forward(self, images): |
|
|
|
if type(images) is list: |
|
image_features = [] |
|
for image in images: |
|
image_feature = self.backbone( |
|
image.to(device=self.device, dtype=self.dtype).unsqueeze(0), |
|
) |
|
image_features.append(image_feature) |
|
else: |
|
image_features = self.backbone( |
|
images.to(device=self.device, dtype=self.dtype), |
|
) |
|
|
|
return { |
|
"image_features": image_features, |
|
"last_feat": image_features[-1], |
|
} |
|
|
|
def backbone(self, images: torch.Tensor) -> Tuple[List[torch.Tensor], List[int]]: |
|
"""Process the input images through the backbone network. |
|
|
|
Inputs: |
|
images (torch.Tensor): The input images. |
|
|
|
Returns: |
|
Tuple[List[torch.Tensor], List[int]]: A tuple containing a list of feature maps and a |
|
ist of channels per level. |
|
""" |
|
with torch.no_grad(): |
|
results = self.basic_forward(images) |
|
feature_maps = [] |
|
|
|
for _stage in results: |
|
feature_maps.append(results[_stage].contiguous()) |
|
return feature_maps |
|
|
|
def basic_forward(self, images): |
|
results = {} |
|
x = self.vision_stem(images) |
|
for _idx in range(len(self.vision_stages)): |
|
x = self.vision_stages[_idx](x) |
|
results[f"stage_{_idx}"] = x |
|
return results |
|
|
|
@property |
|
def dtype(self): |
|
return self.vision_stem[0].weight.dtype |
|
|
|
@property |
|
def device(self): |
|
return self.vision_stem[0].weight.device |
|
|
|
@property |
|
def config(self): |
|
return self.vision_config |
|
|
|
@property |
|
def hidden_size(self): |
|
return sum(self.model_channel) |
|
|
|
if __name__ == '__main__': |
|
model = ConvNextVisionEncoder() |
|
print(model.state_dict().keys()) |