Magnet_Tc_predictor / README.md
IMFAA's picture
Update README.md
cad4512
|
raw
history blame
7.32 kB
metadata
library_name: sklearn
tags:
  - tabular-regression
  - materials property prediction
  - baseline-trainer
widget:
  structuredData:
    Sc:
      - 0
    Ti:
      - 0
    V:
      - 0
    Cr:
      - 0
    Mn:
      - 0
    Fe:
      - 12
    Co:
      - 2
    Ni:
      - 0
    Cu:
      - 0
    Al:
      - 0
    Si:
      - 0
    Ga:
      - 0
    Ge:
      - 0
    Be:
      - 0
    Nb:
      - 0
    Mo:
      - 0
    Re:
      - 0
    Ru:
      - 0
    La:
      - 0
    Ce:
      - 0
    Pr:
      - 1.9
    Nd:
      - 0
    Sm:
      - 0
    Eu:
      - 0
    Gd:
      - 0
    Tb:
      - 0.1
    Dy:
      - 0
    Ho:
      - 0
    Er:
      - 0
    Tm:
      - 0
    Yb:
      - 0
    Lu:
      - 0
    Th:
      - 0
    'Y':
      - 0
    Zr:
      - 0
    B:
      - 0
    C:
      - 0

Model Description

The magnet Curie temperature (Tc [K]) predictor model has been trained using a supervised learning approach on a specific set of magnet classes having 14:2:1 phases. The dataset to train the Tc prediction model is a distinct literature source. Further, the Tc values for various 14:2:1 magnet phases at room temperature are considered for dataset creation.

It predicts the Tc value using the chemical composition as a feature.

E.g: To predict the Tc value Nd2Fe14B1 magnet composition, the features are Nd=2, Fe=14, and B=1.

Application & Limitations

The trained model is valid for 14:2:1 phases only, which are stoichiometric compositions and the predicted Tc value is in Kelvin and at room temperature.

Model pipeline

The voting regressor to predict the Tc combines four base models.

VotingRegressor(estimators=[('ET', ExtraTreesRegressor()),
                        ('XGB',
                         XGBRegressor(alpha=0.5, base_score=0.5,
                                      booster='gbtree', colsample_bylevel=1,
                                      colsample_bynode=1,
                                      colsample_bytree=0.4,
                                      enable_categorical=False, gamma=0,
                                      gpu_id=-1, importance_type=None,
                                      interaction_constraints='',
                                      learning_rate=0.2, max_delta_step=0,
                                      max_depth=2, min_child_weight=1,
                                      missing=nan,
                                      mo...
                                      n_estimators=1000, n_jobs=8,
                                      num_parallel_tree=1, predictor='auto',
                                      random_state=0, reg_alpha=0.5,
                                      reg_lambda=1, scale_pos_weight=1,
                                      subsample=1, tree_method='exact',
                                      validate_parameters=1,
                                      verbosity=None)),
                        ('RF', RandomForestRegressor(max_depth=100)),
                        ('AB',
                         AdaBoostRegressor(base_estimator=RandomForestRegressor(max_depth=50,
                                                                                n_estimators=50),
                                           learning_rate=0.001))])