Hate Speech Classifier for Social Media Content in English Language

A monolingual model for hate speech classification of social media content in English language. The model was trained on 103190 YouTube comments and tested on an independent test set of 20554 YouTube comments. It is based on English BERT base pre-trained language model.

Please cite:

Kralj Novak, P., Scantamburlo, T., Pelicon, A., Cinelli, M., Mozetič, I., & Zollo, F. (2022, July). Handling disagreement in hate speech modelling. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 681-695). Cham: Springer International Publishing. https://link.springer.com/chapter/10.1007/978-3-031-08974-9_54

Tokenizer

During training the text was preprocessed using the original English BERT base tokenizer. We suggest the same tokenizer is used for inference.

Model output

The model classifies each input into one of four distinct classes:

  • 0 - acceptable
  • 1 - inappropriate
  • 2 - offensive
  • 3 - violent

Details on data acquisition and labeling including the Annotation guidelines:
http://imsypp.ijs.si/wp-content/uploads/2021/12/IMSyPP_D2.2_multilingual-dataset.pdf

Downloads last month
1,041
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Spaces using IMSyPP/hate_speech_en 4