bertin-roberta-base-finetuning-esnli
This is a sentence-transformers model trained on a collection of NLI tasks for Spanish. It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Based around the siamese networks approach from this paper.
You can see a demo for this model here.
You can find our other model, paraphrase-spanish-distilroberta here and its demo here.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["Este es un ejemplo", "Cada oración es transformada"]
model = SentenceTransformer('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
model = AutoModel.from_pretrained('hackathon-pln-es/bertin-roberta-base-finetuning-esnli')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
Our model was evaluated on the task of Semantic Textual Similarity using the SemEval-2015 Task for Spanish. We measure
BETO STS | BERTIN STS (this model) | Relative improvement | |
---|---|---|---|
cosine_pearson | 0.609803 | 0.683188 | +12.03 |
cosine_spearman | 0.528776 | 0.615916 | +16.48 |
euclidean_pearson | 0.590613 | 0.672601 | +13.88 |
euclidean_spearman | 0.526529 | 0.611539 | +16.15 |
manhattan_pearson | 0.589108 | 0.672040 | +14.08 |
manhattan_spearman | 0.525910 | 0.610517 | +16.09 |
dot_pearson | 0.544078 | 0.600517 | +10.37 |
dot_spearman | 0.460427 | 0.521260 | +13.21 |
Training
The model was trained with the parameters:
Dataset
We used a collection of datasets of Natural Language Inference as training data:
The whole dataset used is available here.
Here we leave the trick we used to increase the amount of data for training here:
for row in reader:
if row['language'] == 'es':
sent1 = row['sentence1'].strip()
sent2 = row['sentence2'].strip()
add_to_samples(sent1, sent2, row['gold_label'])
add_to_samples(sent2, sent1, row['gold_label']) #Also add the opposite
DataLoader:
sentence_transformers.datasets.NoDuplicatesDataLoader.NoDuplicatesDataLoader
of length 1818 with parameters:
{'batch_size': 64}
Loss:
sentence_transformers.losses.MultipleNegativesRankingLoss.MultipleNegativesRankingLoss
with parameters:
{'scale': 20.0, 'similarity_fct': 'cos_sim'}
Parameters of the fit()-Method:
{
"epochs": 10,
"evaluation_steps": 0,
"evaluator": "sentence_transformers.evaluation.EmbeddingSimilarityEvaluator.EmbeddingSimilarityEvaluator",
"max_grad_norm": 1,
"optimizer_class": "<class 'transformers.optimization.AdamW'>",
"optimizer_params": {
"lr": 2e-05
},
"scheduler": "WarmupLinear",
"steps_per_epoch": null,
"warmup_steps": 909,
"weight_decay": 0.01
}
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 514, 'do_lower_case': False}) with Transformer model: RobertaModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Authors
- Downloads last month
- 8