RuBertTelegramHeadlines

Model description

Example model for Headline generation competition

Based on RuBERT model

Intended uses & limitations

How to use

from transformers import AutoTokenizer, EncoderDecoderModel

model_name = "IlyaGusev/rubert_telegram_headlines"
tokenizer = AutoTokenizer.from_pretrained(model_name, do_lower_case=False, do_basic_tokenize=False, strip_accents=False)
model = EncoderDecoderModel.from_pretrained(model_name)

article_text = "..."

input_ids = tokenizer(
    [article_text],
    add_special_tokens=True,
    max_length=256,
    padding="max_length",
    truncation=True,
    return_tensors="pt",
)["input_ids"]

output_ids = model.generate(
    input_ids=input_ids,
    max_length=64,
    no_repeat_ngram_size=3,
    num_beams=10,
    top_p=0.95
)[0]

headline = tokenizer.decode(output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True)
print(headline)

Training data

Training procedure

import random

import torch
from torch.utils.data import Dataset
from tqdm.notebook import tqdm
from transformers import BertTokenizer, EncoderDecoderModel, Trainer, TrainingArguments, logging


def convert_to_tensors(
    tokenizer,
    text,
    max_text_tokens_count,
    max_title_tokens_count = None,
    title = None
):
    inputs = tokenizer(
        text,
        add_special_tokens=True,
        max_length=max_text_tokens_count,
        padding="max_length",
        truncation=True
    )
    result = {
        "input_ids": torch.tensor(inputs["input_ids"]),
        "attention_mask": torch.tensor(inputs["attention_mask"]),
    }

    if title is not None:
        outputs = tokenizer(
            title,
            add_special_tokens=True,
            max_length=max_title_tokens_count,
            padding="max_length",
            truncation=True
        )

        decoder_input_ids = torch.tensor(outputs["input_ids"])
        decoder_attention_mask = torch.tensor(outputs["attention_mask"])
        labels = decoder_input_ids.clone()
        labels[decoder_attention_mask == 0] = -100
        result.update({
            "labels": labels,
            "decoder_input_ids": decoder_input_ids,
            "decoder_attention_mask": decoder_attention_mask
        })
    return result


class GetTitleDataset(Dataset):
    def __init__(
        self,
        original_records,
        sample_rate,
        tokenizer,
        max_text_tokens_count,
        max_title_tokens_count
    ):
        self.original_records = original_records
        self.sample_rate = sample_rate
        self.tokenizer = tokenizer
        self.max_text_tokens_count = max_text_tokens_count
        self.max_title_tokens_count = max_title_tokens_count
        self.records = []
        for record in tqdm(original_records):
            if random.random() > self.sample_rate:
                continue
            tensors = convert_to_tensors(
                tokenizer=tokenizer,
                title=record["title"],
                text=record["text"],
                max_title_tokens_count=self.max_title_tokens_count,
                max_text_tokens_count=self.max_text_tokens_count
            )
            self.records.append(tensors)

    def __len__(self):
        return len(self.records)

    def __getitem__(self, index):
        return self.records[index]


def train(
    train_records,
    val_records,
    pretrained_model_path,
    train_sample_rate=1.0,
    val_sample_rate=1.0,
    output_model_path="models",
    checkpoint=None,
    max_text_tokens_count=256,
    max_title_tokens_count=64,
    batch_size=8,
    logging_steps=1000,
    eval_steps=10000,
    save_steps=10000,
    learning_rate=0.00003,
    warmup_steps=2000,
    num_train_epochs=3
):
    logging.set_verbosity_info()
    tokenizer = BertTokenizer.from_pretrained(
        pretrained_model_path,
        do_lower_case=False,
        do_basic_tokenize=False,
        strip_accents=False
    )
    train_dataset = GetTitleDataset(
        train_records,
        train_sample_rate,
        tokenizer,
        max_text_tokens_count=max_text_tokens_count,
        max_title_tokens_count=max_title_tokens_count
    )
    val_dataset = GetTitleDataset(
        val_records,
        val_sample_rate,
        tokenizer,
        max_text_tokens_count=max_text_tokens_count,
        max_title_tokens_count=max_title_tokens_count
    )
    
    model = EncoderDecoderModel.from_encoder_decoder_pretrained(pretrained_model_path, pretrained_model_path)
    training_args = TrainingArguments(
        output_dir=output_model_path,
        per_device_train_batch_size=batch_size,
        per_device_eval_batch_size=batch_size,
        do_train=True,
        do_eval=True,
        overwrite_output_dir=False,
        logging_steps=logging_steps,
        eval_steps=eval_steps,
        evaluation_strategy="steps",
        save_steps=save_steps,
        learning_rate=learning_rate,
        warmup_steps=warmup_steps,
        num_train_epochs=num_train_epochs,
        max_steps=-1,
        save_total_limit=1,
    )

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        eval_dataset=val_dataset
    )
    trainer.train(checkpoint)
    model.save_pretrained(output_model_path)
Downloads last month
63
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using IlyaGusev/rubert_telegram_headlines 1