|
--- |
|
language: fr |
|
datasets: |
|
- common_voice |
|
tags: |
|
- audio |
|
- automatic-speech-recognition |
|
- speech |
|
- xlsr-fine-tuning |
|
license: apache-2.0 |
|
model-index: |
|
- name: wav2vec2-large-xlsr-53-French_punctuation by Ilyes Rebai |
|
results: |
|
- task: |
|
name: Speech Recognition |
|
type: automatic-speech-recognition |
|
dataset: |
|
name: Common Voice |
|
args: fr |
|
metrics: |
|
- name: Test WER and CER on text and puctuation prediction |
|
types: [wer, cer] |
|
values: [19.47%, 6.66%] |
|
- name: Test WER and CER on text without punctuation |
|
types: [wer, cer] |
|
values: [17.88%, 6.37%] |
|
|
|
--- |
|
## Evaluation on Common Voice FR Test |
|
```python |
|
import re |
|
import torch |
|
import torchaudio |
|
from datasets import load_dataset, load_metric |
|
from transformers import ( |
|
Wav2Vec2ForCTC, |
|
Wav2Vec2Processor, |
|
) |
|
|
|
|
|
|
|
model_name = "Ilyes/wav2vec2-large-xlsr-53-french_punctuation" |
|
|
|
|
|
model = Wav2Vec2ForCTC.from_pretrained(model_name).to('cuda') |
|
processor = Wav2Vec2Processor.from_pretrained(model_name) |
|
|
|
|
|
ds = load_dataset("common_voice", "fr", split="test") |
|
|
|
|
|
chars_to_ignore_regex = '[\;\:\"\“\%\‘\”\�\‘\’\’\’\‘\…\·\ǃ\«\‹\»\›“\”\\ʿ\ʾ\„\∞\\|\;\:\*\—\–\─\―\_\/\:\ː\;\=\«\»\→]' |
|
def normalize_text(text): |
|
text = text.lower().strip() |
|
text = re.sub('œ', 'oe', text) |
|
text = re.sub('æ', 'ae', text) |
|
text = re.sub("’|´|′|ʼ|‘|ʻ|`", "'", text) |
|
text = re.sub("'+ ", " ", text) |
|
text = re.sub(" '+", " ", text) |
|
text = re.sub("'$", " ", text) |
|
text = re.sub("' ", " ", text) |
|
text = re.sub("−|‐", "-", text) |
|
text = re.sub(" -", "", text) |
|
text = re.sub("- ", "", text) |
|
text = re.sub(chars_to_ignore_regex, '', text) |
|
return text |
|
|
|
|
|
|
|
def map_to_array(batch): |
|
speech, _ = torchaudio.load(batch["path"]) |
|
batch["speech"] = resampler.forward(speech.squeeze(0)).numpy() |
|
batch["sampling_rate"] = resampler.new_freq |
|
batch["sentence"] = normalize_text(batch["sentence"]) |
|
return batch |
|
|
|
ds = ds.map(map_to_array) |
|
|
|
resampler = torchaudio.transforms.Resample(48_000, 16_000) |
|
def map_to_pred(batch): |
|
features = processor(batch["speech"], sampling_rate=batch["sampling_rate"][0], padding=True, return_tensors="pt") |
|
input_values = features.input_values.to(device) |
|
attention_mask = features.attention_mask.to(device) |
|
with torch.no_grad(): |
|
logits = model(input_values, attention_mask=attention_mask).logits |
|
pred_ids = torch.argmax(logits, dim=-1) |
|
batch["predicted"] = processor.batch_decode(pred_ids) |
|
batch["target"] = batch["sentence"] |
|
# remove duplicates |
|
batch["target"] = re.sub('\.+', '.', batch["target"]) |
|
batch["target"] = re.sub('\?+', '?', batch["target"]) |
|
batch["target"] = re.sub('!+', '!', batch["target"]) |
|
batch["target"] = re.sub(',+', ',', batch["target"]) |
|
return batch |
|
|
|
result = ds.map(map_to_pred, batched=True, batch_size=16, remove_columns=list(ds.features.keys())) |
|
wer = load_metric("wer") |
|
print(wer.compute(predictions=result["predicted"], references=result["target"])) |
|
``` |
|
## Some results |
|
|
|
| Reference | Prediction | |
|
| ------------- | ------------- | |
|
| il vécut à new york et y enseigna une grande partie de sa vie. | il a vécu à new york et y enseigna une grande partie de sa vie. | |
|
| au classement par nations, l'allemagne est la tenante du titre. | au classement der nation l'allemagne est la tenante du titre. | |
|
| voici un petit calcul pour fixer les idées. | voici un petit calcul pour fixer les idées. | |
|
| oh! tu dois être beau avec | oh! tu dois être beau avec. | |
|
| babochet vous le voulez? | baboche, vous le voulez? | |
|
| la commission est, par conséquent, défavorable à cet amendement. | la commission est, par conséquent, défavorable à cet amendement. | |
|
|
|
All the references and predictions of the test corpus are already available in this repository. |
|
|
|
## Results |
|
|
|
text + punctuation |
|
|
|
WER=21.47% CER=7.21% |
|
|
|
|
|
text (without punctuation) |
|
|
|
WER=19.71% CER=6.91% |
|
|
|
|