Edit model card

bert-base-uncased_11112024T103209

This model is a fine-tuned version of google-bert/bert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4280
  • F1: 0.8712
  • Learning Rate: 0.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 600
  • num_epochs: 40
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss F1 Rate
No log 0.9942 86 1.7522 0.1396 0.0000
No log 2.0 173 1.5504 0.3793 0.0000
No log 2.9942 259 1.3168 0.5063 0.0000
No log 4.0 346 1.0578 0.5762 0.0000
No log 4.9942 432 0.8963 0.6332 0.0000
1.3438 6.0 519 0.7904 0.6792 0.0000
1.3438 6.9942 605 0.6959 0.7280 2e-05
1.3438 8.0 692 0.5408 0.8100 2e-05
1.3438 8.9942 778 0.4754 0.8469 0.0000
1.3438 10.0 865 0.4280 0.8712 0.0000
1.3438 10.9942 951 0.4683 0.8750 0.0000
0.4057 12.0 1038 0.5107 0.8769 0.0000
0.4057 12.9942 1124 0.5242 0.8879 0.0000
0.4057 14.0 1211 0.6143 0.8807 0.0000
0.4057 14.9942 1297 0.6044 0.8844 0.0000
0.4057 16.0 1384 0.5825 0.8942 0.0000
0.4057 16.9942 1470 0.6377 0.8896 0.0000
0.0457 18.0 1557 0.7469 0.8774 0.0000
0.0457 18.9942 1643 0.7769 0.8818 0.0000
0.0457 20.0 1730 0.6606 0.8943 0.0000
0.0457 20.9942 1816 0.7124 0.8915 0.0000
0.0457 22.0 1903 0.7385 0.8879 0.0000
0.0457 22.9942 1989 0.6596 0.8977 0.0000
0.0106 24.0 2076 0.7477 0.8887 0.0000
0.0106 24.9942 2162 0.6636 0.8990 0.0000
0.0106 26.0 2249 0.7530 0.8924 0.0000
0.0106 26.9942 2335 0.7221 0.8944 0.0000
0.0106 28.0 2422 0.7504 0.8931 0.0000
0.0051 28.9942 2508 0.7383 0.8951 0.0000
0.0051 30.0 2595 0.7678 0.8904 0.0000
0.0051 30.9942 2681 0.7626 0.8903 0.0000
0.0051 32.0 2768 0.7509 0.8915 0.0000
0.0051 32.9942 2854 0.7659 0.8915 2e-06
0.0051 34.0 2941 0.7721 0.8905 0.0000
0.0032 34.9942 3027 0.7705 0.8904 1e-06
0.0032 36.0 3114 0.7724 0.8893 7e-07
0.0032 36.9942 3200 0.7740 0.8895 4e-07
0.0032 38.0 3287 0.7749 0.8892 1e-07
0.0032 38.9942 3373 0.7746 0.8889 0.0
0.0032 39.7688 3440 0.7747 0.8889 0.0

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.5.1+cu124
  • Datasets 3.1.0
  • Tokenizers 0.19.1
Downloads last month
8
Safetensors
Model size
109M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Imkaran/bert-base-uncased_11112024T103209

Finetuned
(2158)
this model