FILM-7B / README.md
ShengnanAn's picture
Update README.md
4750622 verified
|
raw
history blame
1.57 kB
---
license: apache-2.0
datasets:
- In2Training/VaLProbing-32K
language:
- en
---
# FILM-7B
<p align="center">
πŸ’» <a href="https://github.com/microsoft/FILM/" target="_blank">[Github Repo]</a> β€’ πŸ“ƒ <a href="https://arxiv.org/abs/xxx" target="_blank">[Paper]</a> β€’ πŸ€— <a href="https://huggingface.co/datasets/In2Training/VaLProbing-32K" target="_blank">[VaLProbing-32K] </a>
</p>
**FILM-7B** is a 32K-context LLM that overcomes the lost-in-the-middle problem.
It is trained from Mistral-7B-Instruct-v0.2 by applying Information-Intensie (In2) Training.
FILM-7B achieves near-perfect performance on probing tasks, SOTA-level performance on real-world long-context tasks among ~7B size LLMs, and does not compromise the short-context performance.
## Model Usage
The system tempelate for FILM-7B:
```text
[INST] Below is a context and an instruction. Based on the information provided in the context, write a response for the instruction.
### Context:
{YOUR LONG CONTEXT}
### Instruction:
{YOUR QUESTION & INSTRUCTION} [/INST]
```
## Probing Results
To reproduce the results on our VaL Probing, see the guidance in [https://github.com/microsoft/FILM/tree/main/VaLProbing](https://github.com/microsoft/FILM/tree/main/VaLProbing).
<p align="center">
<img src="./figures/probing_results.png" width="800">
<br>
</p>
## Real-World Long-Context Tasks
<p align="center">
<img src="./figures/real_world_long.png" width="800">
<br>
</p>
## Short-Context Tasks
<p align="center">
<img src="./figures/short.png" width="800">
<br>
</p>