Whisper large-v3-turbo model for CTranslate2
This repository contains the conversion of openai/whisper-large-v3-turbo to the CTranslate2 model format.
This model can be used in CTranslate2 or projects based on CTranslate2 such as faster-whisper.
Example with batch inference
import time
from faster_whisper import WhisperModel, BatchedInferencePipeline
from faster_whisper.audio import decode_audio
model = WhisperModel("Infomaniak-AI/faster-whisper-large-v3-turbo",
device="cuda",
num_workers=4,
compute_type='float16')
batch = BatchedInferencePipeline(model=model,
use_vad_model=True,
chunk_length=30)
audio = decode_audio("audio.mp3", sampling_rate=model.feature_extractor.sampling_rate)
start_time = time.time()
segment_generator, info = batch.transcribe(audio,
batch_size=32,
beam_size=5,
task="transcribe",
word_timestamps=True,
suppress_blank=True)
segments = []
text = ""
for segment in segment_generator:
segments.append(segment)
text = text + segment.text
print("--- %s seconds ---" % (time.time() - start_time))
Conversion details
The original model was converted with the following command:
ct2-transformers-converter --model openai/whisper-large-v3-turbo --output_dir whisper-large-v3-turbo --copy_files tokenizer.json preprocessor_config.json --quantization float16
Note that the model weights are saved in FP16. This type can be changed when the model is loaded using the compute_type
option in CTranslate2.
More information
For more information about the original model, see its model card.
- Downloads last month
- 90
Inference API (serverless) does not yet support ctranslate2 models for this pipeline type.